

1. ANCA IORDAN, 2. MANUELA PĂNOIU

DESIGN OF SEQUENCE DIAGRAMS
FOR IMPLEMENTATION OF A DYNAMICAL SOFTWARE

FOR DOING GEOMETRICAL CONSTRUCTIONS

 Abstract:

This paper presents a software package, which can be used as educational software. The informatics
system, including modern methods and techniques, will lead the subject which is using it to gain
experience in understanding and managing the knowledge from geometry field and will offer the
comfortable and efficient access to the newest information and knowledge. The investigation can be
oriented towards reaching of some precise purposes or can be an exploration.

 Keywords:

UML, Sequence Diagram, Educational Software

 INTRODUCTION

Unified Modeling Language (UML) is a
standardized general-purpose modeling
language in the field of software engineering [1].
UML includes a set of graphical notation
techniques to create abstract models of specific
systems.
The Unified Modeling Language (UML) is an
open method used to specify, visualize,
construct and document the artifacts of an
object-oriented software-intensive system under
development. UML offers a standard way to
write a system's blueprints, including conceptual
components such as: actors, business processes,
system's components and activities, as well as
concrete things such as: programming language
statements, database schemas and reusable
software components.
UML combines the best practice from data
modeling concepts such as entity relationship
diagrams, business modeling (work flow), object

modeling and component modeling. It can be
used with all processes, throughout the software
development life cycle, and across different
implementation technologies. UML has
succeeded the concepts of the Booch method,
the Object-modeling technique (OMT) and
Object-oriented software engineering (OOSE) by
fusing them into a single, common and widely
usable modeling language. UML aims to be a
standard modeling language which can model
concurrent and distributed systems. UML is not
an industry standard, but is taking shape under
the auspices of the Object Management Group
(OMG). OMG has initially called for information
on object-oriented methodologies, that might
create a rigorous software modeling language.
Many industry leaders have responded in earnest
to help create the standard.
UML models may be automatically transformed
to other representations by means of QVT-like
transformation languages, supported by the
OMG. UML is extensible, offering the following

© copyright FACULTY of ENGINEERING – HUNEDOARA, ROMANIA 49

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

mechanisms for customization: profiles and
stereotype.
UML is not a development method by itself,
however, it was designed to be compatible with
the leading object-oriented software
development methods of its time. Since UML has
evolved, some of these methods have been
recast to take advantage of the new notations
(for example OMT), and new methods have
been created based on UML. The best known is
IBM Rational Unified Process (RUP). There are
many other UML-based methods like Abstraction
Method, Dynamic Systems Development
Method, and others, designed to provide more
specific solutions, or achieve different
objectives.
It is very important to distinguish between the
UML model and the set of diagrams of a system.
A diagram is a partial graphical representation
of a system's model. The model also contains a
"semantic backplane" — documentation such as
written use cases that drive the model elements
and diagrams.
UML diagrams represent two different views of a
system model [2]:

 Static view: Emphasizes the static structure
of the system using objects, attributes,
operations and relationships. The structural
view includes class diagrams and composite
structure diagrams.

 Dynamic view: Emphasizes the dynamic
behavior of the system by showing
collaborations among objects and changes
to the internal states of objects. This view
includes sequence diagrams, activity
diagrams and state machine diagrams.

UML models can be exchanged among

 SEQUENCE DIAGRAMS

A sequence diagram in Unified Modeling
Language (UML) is a kind of interaction diagram
that shows how processes operate with one
another and in what order [3]. It is a construct of
a Message Sequence Chart. Sequence diagrams
are sometimes called Event-trace diagrams,
event scenarios, and timing diagrams.
A sequence diagram shows, as parallel vertical
lines, different processes or objects that live
simultaneously, and, as horizontal arrows, the
messages exchanged between them, in the order
in which they occur. This allows the

specification of simple runtime scenarios in a
graphical manner.
The UML 2.0 Sequence Diagram supports similar
notation to the UML 1.x Sequence Diagram with
added support for modeling variations to the
standard flow of events.
If the lifeline is that of an object, it is underlined.
Note that leaving the instance name blank can
represent anonymous and unnamed instances.
In order to display interaction, messages are
used. These are horizontal arrows with the
message name written above them. Solid arrows
with full heads are synchronous calls, solid
arrows with stick heads are asynchronous calls
and dashed arrows with stick heads are return
messages. This definition is true as of UML 2,
considerably different from UML 1.x.
Activation boxes, or method-call boxes, are
opaque rectangles drawn on top of lifelines to
represent that processes are being performed in
response to the message (Execution
Specifications in UML). Objects calling methods
on themselves use messages and add new
activation boxes on top of any others to indicate
a further level of processing.
When an object is destroyed, an X is drawn on
top of the lifeline, and the dashed line ceases to
be drawn below it (this is not the case in the first
example though). It should be the result of a
message, either from the object itself, or another.
A message sent from outside the diagram can be
represented by a message originating from a
filled-in circle ("found message" in UML) or from
a border of sequence diagram ("gate" in UML).
UML 2 has introduced significant improvements
to the capabilities of sequence diagrams [4]. Most
of these improvements are based on the idea of
interaction fragments which represent smaller
pieces of an enclosing interaction. Multiple
interaction fragments are combined to create a
variety of combined fragments, which are then
used to model interactions that include
parallelism, conditional branches, optional
interactions etc.
Some systems have simple dynamic behavior
that can be expressed in terms of specific
sequences of messages between a small, fixed
number of objects or processes. In such cases
sequence diagrams can completely specify the
system's behavior. Often, behavior is more
complex, e.g. when the set of communicating
objects is large or highly variable, when there are
many branch points (e.g. exceptions), when

2008/ACTA TECHNICA CORVINIENSIS/Tome I 50

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

there are complex iterations, or synchronization
issues such as resource contention [5]. In such
cases, sequence diagrams cannot completely
describe the system's behavior, but they can
specify typical use cases for the system, small
details in its behavior, and simplified overviews
of its behavior.

 PRESENTATION OF SEQUENCE DIAGRAMS

UTILIZED TO IMPLEMENTATION OF A
DYNAMICAL SOFTWARE FOR DOING
GEOMETRICAL CONSTRUCTIONS

In the achievemnt of the interactive informatics
system designed for studying geometry were
aimed the following purposes:

 presenting of theoretical concepts and main
results;

 interactive presentation of applications for
each required subdomain;

 achievement of accurate drawings by
replacing the pencil and ruler with the
mouse.

By representing the diagrams related to the
three steps: analysis, designing and
implementation, the interactive informatics
system will be described in a clear and concise
manner. Utilization of the UML modelling
language in the diagrams’ achievement is
featured by a rich syntactic and semantic rigour,
and support for visual modeling.
The sequence diagram is used primarily to show
the interactions between objects in the
sequential order that those interactions occur.
Much like the class diagram, developers
typically think sequence diagrams were meant
exclusively for them..
The diagram illustrates in figure 1 shows the
interactions between objects, which have as
purpose the drawing of a parabola. One can
notice that there are interactions between nine
objects, out of which the objects of
Vector<Element2D>, Desen2D and Graphics2D
type are already created, and the objects of
Element2D, Punct2D, Dreapta2D, MouseEvent
and Parabola2D type will instantiate during the
interactions.
The diagram illustrates in figure 2 shows the
interactions between objects, which have as
purpose the drawing of a hyperbola. One can
notice that there are interactions between
eleven objects, out of which the objects of
Vector<Element2D>, Desen2D,

Vector<Punct2D> and Graphics2D type are
already created, and the objects of Element2D,
Parametru, Punct2D, MouseEvent and
Hyperbola2D type will instantiate during the
interactions.

Figure 1. Sequence diagram for drawing a parabola

The diagram illustrates in figure 3 shows the
interactions between objects, which have as
purpose the drawing the normal to a hyperbola.
One can notice that there are interactions
between nine objects, out of which the objects of
Vector<Element2D>, Desen2D and Graphics2D
type are already created, and the objects of
Element2D, Punct2D, Dreapta2D, MouseEvent
and Hiperbola2D type will instantiate during the
interactions.
These objects are represented on Ox axis and, on
Oy axis, are represented the messages ordered
increasingly in time. At the beginning, the
execution’s control is undertaken by the object
of Desen2D type which creates an instance of the
MouseEvent class.
Now, the control is undertaken by this newly
created instance that will allow to determining a
point. Giving the control to the object of
Hiperbola2D type, will verified if the created
point belong to the hyperbola.

2008/ACTA TECHNICA CORVINIENSIS/Tome I 51

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

2008/ACTA TECHNICA CORVINIENSIS/Tome I 52

Figure 2. Sequence diagram for drawing a hyperbola

Figure 3. Sequence diagram for drawing a the

normal to a hyperbola

Giving back the control to the object of Desen2D
type, further will be instantiated the object of
Dreapta2D type, representing the normal to
hyperbola, then will be destroyed the object of

Punct2D type and the object of Hiperbola2D
type.
Further, the execution’s control is transmitted to
the object of Vector<Element2D> type, in order
to add the normal previously created in the list
of 2D elements of the geometric construction,
and then will be destroyed the instance of the
Dreapta2D class. Finally, will be redrawn the
geometric construction, which will include now
also the normal to the previously created
hyperbola by using the object of Graphics2D
type.

 CONCLUSION

The diagrams were achieved by an approach in
a new manner, multidisciplinary, of the
informatics application, including both the
modern pedagogy methods, and the
components specific to the discipline to be
studied.
Thus, was achieved the connection between the
didactic actions and the purposes and objectives
scientifically established, by elaborating of new
methods and assimilating of new means, capable
to increase the school efficiency, allowing the
pupils and students to acquire the system
required by knowledge’s and their application
techniques in conditions as optimal possible.

 REFERENCES

[1.] Booch G., Rumbaugh J., Jacobson I., The

Unified Modeling Language User Guide,
Addison Wesley, 1999

[2.] Fowler M., Scott K., UML Distilled: A Brief Guide
to the Standard Object Modeling Language,
Addison Wesley, Readings MA, USA, 2000

[3.] Odell J., Advanced Object Oriented Analysis &
Design using UML, Cambrige University Press,
1998

[4.] Oestereich B., Developing Software with UML,
Addison Wesley, 1999

[5.] Rumbaugh J, Jacobson I., Booch G., The Unified
Modeling Language Reference Manual,
Addison Wesley, 1999

 AUTHORS & AFFILIATION

1. ANCA IORDAN, 2. MANUELA PĂNOIU

1. 2. 3 FACULTY OF ENGINEERING HUNEDOARA,
UNIVERSITY “POLITEHNICA” TIMISOARA, ROMANIA

	 Keywords:
	UML, Sequence Diagram, Educational Software
	 Conclusion
	 References
	 Authors & Affiliation

