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 Abstract: 

Advances in real-time data collection, data transfer and increasing computational power are bringing 
simulation assisted control closer to reality. The contribution deals with the development and testing 
of a prototype simulation assisted controller, in which a simulation program is embedded in realtime 
control decision making. Results from an experiment in a full-scale environmental test facility prove 
the feasibility of predictive control using thermal simulation program.  
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 INTRODUCTION 

 
The most of recent developments in Building 
Energy Management Systems (BEMS) have 
applied the advances made in computer and 
information technology. Significant 
developments have been made in the 
standardisation of communication protocols [1] 
and in web-enabled controllers [19]. There has 
been less focus on the development of new 
concepts in control, particularly in the built 
environment. Despite this, some important 
advances of  building control techniques have 
been made.  
The concept of predictive control, which uses a 
model in addition to measured data in order to 
predict the optimum control strategy to be 
implemented, could assist in the more efficient 
operation of BEMS. This results in lower energy 
consumption and more comfortable buildings. 
Work has been done on predictive controllers 

using stochastic models [14, 15]. Both short term 
(10-20 min.) and long term (days) prediction 
errors lay within acceptable ranges both in terms 
of temperature and humidity control. Prediction 
errors were found to be within 1°C and 1.5% 
relative humidity. 
Other advancements include the use of fuzzy 
logic control [6]  and the use of neural networks 
[2]. The basic idea behind fuzzy logic control is to 
incorporate the experience of a human process 
operator in the design of the controller: this 
unfortunately requires good quality experiential 
knowledge and data about the controlled 
system’s operating conditions. A neural network 
is a control mechanism based on the operational 
principles of the human brain. It can be 
described as a set of linked units that connect an 
input to an output. These units interact with 
each other by means of weighted connections. 
The network requires training by giving the 
related output to a given input, resulting in 
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certain weights being assigned to particular 
connections. An apparent drawback with the 
use of neural networks in control is the 
requirement for extensive training data. 
Controllers incorporating self-learning 
algorithms in control systems are now quite 
common, for example in optimum start of 
heating plant [18]. The aim is to achieve the 
defined zone conditions at the desired time of 
arrival  of the occupants in the shortest possible 
time. However, the International Energy Agency 
(IEA) Annex 17 research work [13] showed that 
these learning algorithms can initially take days 
to predict the correct optimum start time and 
have difficulty dealing with unusual conditions 
such as long shutdown periods, exceptional 
weather conditions and changes in building 
operation. Even the best trained self-learning 
controller cannot extrapolate beyond its range 
of experience. 
The controlled entity is basically a nonphysical 
"black-box model". There are inherent 
limitations in the black box approach to control 
as the controller has no knowledge of the cause 
and effect relationships between the elements of 
the controlled system and external excitations 
such as climate and occupant interaction. With 
passive buildings employing natural resources 
such as daylight and free cooling, control 
actions become convoluted due to these 
interactions between the elements of the 
controlled system (e.g. glare requiring blind 
repositioning, causing luminaire actuation, 
leading to increased cooling loads). Such 
interactions can be represented in a physically-
based model in which all the elements are in 
interactions [4]. Building simulation programs 
can provide such a model.  

 
 CONTROL ASSISTED BY SIMULATION 

 
Nowadays, detailed simulation programs are 
playing significant roles in this areas: 
Emulators: Emulators replace a building and its 
HVAC (heating, ventilation, air-conditioning) 
systems and use a computer program to 
simulate their response to the BEMS commands. 
Emulators can also be used for control product 
development, training of BEMS operators, 
tuning of control equipment and imitating fault 
situations to see how the BEMS would cope [11]. 
Collaborative research work on emulation was 
carried out by the IEA under Annex 16 and 

Annex 17. Six different emulators were 
developed: three used HVACSIM+ and three 
used TRYNSYS. One of the best-known 
emulators developed within the framework of 
Annex 17 was SIMBAD (SIMulator for Buildings 
And Devices), which uses both the TRNSYS and 
HVACSIM+ simulation software. The early 
versions of SIMBAD had difficulty simulating 
dynamic conditions, the creation of HVAC 
models was tedious and the user interface was 
not user friendly. In order to address these 
difficulties CSTB are currently developing a 
toolbox of models of HVAC components and 
plant for the design and testing of control 
systems. Johnson Controls and the National 
Institute of Standards and Technology in the US 
have developed a low cost PC based emulator 
[3]. The company is now using this for the 
purpose of testing new control products.  
Simulation models play a similar role in the 
development of fault-detection and diagnosis 
(FDD), a technique which aims to detect and 
locate faults or predict the presence of faults in 
energy management systems [12]. FDD uses a 
model of the correctly operating system to 
supplement the conventional feedback loop, the 
model acting as a reference for correct 
behaviour of the controlledsystem. Test results 
[20] on an air handling unit serving a dual duct 
air conditioning system show that the use of FDD 
improved the control performance and achieved 
good results in detecting leakage of a control 
valve on a cooling coil and the sticking of a 
return air damper. 
Evaluators: In this role, simulation programs can 
be used to test the efficacy of possible control 
strategies. In this case a detailed model of the 
building/HVAC system is established, and various 
control strategies are evaluated in terms of 
comfort acceptability and energy efficiency [13].  
The objective of this research was to investigate 
a possible third use for simulation programs: 
their encapsulation within the BEMS system in 
order to provide simulation assisted control. The 
research, undertaken in collaboration with 
Honeywell Control Systems, involved executing 
the simulation program as part of the control 
task in order to evaluate several possible control 
scenarios and make a selection interms of some 
relevant criteria. Although this possibility had 
been suggested previously, it was dismissed at 
the time as being "beyond the capabilities of the 
detailed simulation programs" [10]. The premise 
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of the present study is that simulation program 
capabilities and BEMS flexibility are now 
sufficiently advanced for simulation assisted 
control to be feasible. 
Although there are potential difficulties 
associated with simulation assisted control (e.g. 
the need to make and calibrate a model of the 
system, particularly when dynamic variations 
due to airflow and solar radiation are important; 
the difficulty of parsing from complex result sets 
to simple actions), physically-based models offer 
the following benefits over "black-box" models: 

 they are able to address cause and effect 
scenarios such as outlined previously; 

 they can adapt to the impact of changing 
building use or operation (provided that the 
change is incorporated into the model); 

 they potentially offer better control through 
calculation of interactions and can identify 
the factors that result in particular building 
performance; 

 they provide the possibility of comparing 
options for different control strategies by 
testing them on the building model. 

 Simulation assisted control is likely to be of 
most use in the following circumstances: 

 when significant look-ahead times are 
involved (hours, rather than minutes); 

 for high-level supervisory control, e.g. load 
shedding, where several alternatives and 
their implications for environmental 
conditions (particularly occupant comfort) 
may need to be evaluated; 

 where interaction is high, e.g. 
blinds/lighting/cooling; and 

 where the building use varies or changes 
(e.g. large variations in occupancy) and 
where this variation is known in advance. 

Table 1 lists those plant systems that have been 
identified as presenting opportunities for 
simulation assisted control. In addition, where 
integrated control is emphasised, a BEMS system 
would likely benefit from explicit simulation of 
the interactions within the building. 
The primary objective of this pilot project was 
therefore to investigate the possibility of 
integrating simulation within real-time BEMS 
operation to provide a prototype control 
decision-making capability. The envisaged 
system is depicted in Fig. 1. This shows the usual 
BEMS control structure - inputs are obtained 
from climate and building state sensors, and an 
internal control algorithm decides on the 

appropriate control action for switching heating, 
cooling etc. The new elements are the simulator, 
which models the building/HVAC using sensed 
data as boundary conditions, and an evaluator, 
which scans the simulation results to suggest an 
appropriate control action to the main 
simulation assisted controller. 

 
Tab. 1 Applications suitable for simulation  

assisted control [4] 

 
 

 
Fig.1 Simulation assisted control [4]    

 
The study investigated whether real-time 
simulation could be introduced as shown in Fig. 
1. In view of the many practical interface issues 
that would be inherent in using a BEMS system 
directly, as demonstrated in the development of 
the SIMBAD emulator [9], it was decided to use 
LabVIEW as a BEMS replacement and the 
dynamic simulation program ESP-r [5] for 
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control scenario appraisal. LabVIEW is used 
widely in industry for SCADA (Supervisory 
Control and Data Acquisition) applications, and 
for prototype development it offered the 
necessary flexibility without being tied to a 
particular BEMS protocol. The ESP-r system was 
used as it is a detailed simulation program with 
explicit representation of all heat and mass 
transfer processes and includes an extensive 
array of control capabilities. 
The research had the following elements. 
a] The identification of control functions of 

current BEMS that might benefit from 
simulation assistance. 

b] The creation of LabVIEW routines for data 
acquisition and control actuation. 

c] The development of the real-time linking of 
these routines to ESP-r to permit scenario 
appraisal, selection and enactment. 

d] A testing of this linked system in realistic 
scale experiments.  

 
 APPLICATION AND EXPERIMENT 

 
The application of a prototype simulation 
assisted controller required the following 
elements: 
a] A calibrated model of the building and HVAC 

system. 
b] Sensors to measure all critical boundary 

conditions (external temperature, solar 
radiation, etc) and internal conditions 
(temperature, humidity etc); the data must 
be collated in the BEMS (i.e. within 
LabVIEW). 

c] A mechanism for transferring data to the 
simulator. 

d] A routine within the BEMS for initiating the 
simulation(s) against a predefined control 
strategy. 

e] A simulator to predict internal conditions 
and ascertain parameters (start time, plant 
output, etc) to meet some user-defined 
criterion. 

f] A controller to make decisions based on 
modelling outputs. 

g] A mechanism for transferring control data 
back to the BEMS (LabVIEW). 

h] Actuators controlled by the BEMS to initiate 
the control action. 

i] A structure to allow iteration and updating 
of control actions. 

An independent software module was developed 
that, together with LabVIEW and ESP-r, forms 
the prototype simulation assisted controller. The 
software module combines several of the 
elements outlined above. The function of these 
three programs, and the developments required 
in each case are described in the following 
paragraphs. 

 
 ESP-r 

 
The main use of the ESP-r system is for design 
decision support. Several changes were required 
to cope with the novel aspects of real-time 
simulation. The most important of these were 
the transfer of acquired data into ESP-r 
databases, and the subsequent use of this 
measured data to maintain the correct model 
state until the current time, after which the 
specified predictive controller was invoked. 

 
 LabVIEW 

 
In its role as a surrogate BEMS, LabVIEW is the 
controlling entity. Programs were therefore 
written in LabVIEW’s in-built G programming 
language to collect sensor data, to display and 
store this data in a format suitable for import to 
ESP-r’s databases, to commission simulations, to 
receive the suggested control action and to 
initiate that action. 

 
 BEMS to ESP-r link 

 
This new interface module operates on the basis 
of a control definition file containing the 
following information: 
 the type of control simulation to be 

conducted (e.g. winter: heating, summer: 
cooling); 

 designated controlled spaces; 
 control action type(s) to be investigated (e.g. 

optimum start/stop, night ventilation); 
 available plant capacity for each space; 
 control strategy end time; 
 target set-point for each space; 
 target time at which set-point is to be 

attained. 
The interface module is controlled by the BEMS 
system (LabVIEW), and is passed a file containing 
LabVIEW’s monitored climate and internal 
temperature data. The module then performs 
the following tasks: 
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[1.] Simulation Synchronisation: The required 
start and stop dates for the simulation are 
determined, based on the time-stamped data 
contained within the file provided by LabVIEW. 
The program also calculates a simulation 
frequency (time step) based on the sampling rate 
of the monitored data. 
[2.] Climate Prediction: The LabVIEW data file is 
read and its climate information used to predict 
weather conditions for the next 24 to 48 hours. 
At this stage, only a structure for short-term 
climate prediction has been implemented with 
a simple algorithm: further work will be required 
to develop this function. 
[3.] Control Strategy Preparation: Based on the 
control action type specified in the control 
definition file, the interface module develops a 
suitable control strategy for use in the ESP-r 
simulation. 
Firstly, the controlled space temperatures are 
held to those contained in the monitored data 
passed by LabVIEW until time tc, the last 
monitored time in the file, after which the 
simulation evolves freely (with predicted climate 
data) until time tp. 
Secondly, the module determines the plant 
action start time: this is either advanced or 
retarded based on the progress of the predictive 
simulation. Plant action is made according to a 
defined plant control strategy until time te, the 
specified shut down time. 
[4.] Simulation Commissioning: Based on the 
calculated simulation start and stop dates, 
simulation frequency and user defined control 
strategy, the interface module commissions n 
simulations (where n = (tstop − tstart) × 
1/frequency). In each of these simulations a 
control parameter (e.g. plant start time) is 
changed by a fixed increment. The parameters 
for the simulation are passed to the simulator in 
the form of a control definition file and 
a simulation parameter file (defining the period 
over which the simulation is to be run and the 
time step of the simulation). 
[5.] Results Interpretation: At each iteration, the 
interface module examines the simulation 
output and compares the value of the controlled 
space variable reached at the target time with 
that specified in the control definition file. If the 
controlled value is not acceptable then another 
simulation is commissioned with the plant 
action time tp advanced or retarded by one time 
increment depending on the type of simulation 

being conducted. If the controlled value is 
within bounds then the sequence of simulations 
is stopped and the time and/or value which 
meets the control criteria reported back to 
LabVIEW. 
As a result of these developments, it is possible to 
implement the functions listed in Table 1. For the 
purposes of this project, one commonly used 
function was tested - optimum start control. The 
following section describes one experiment that 
was set up within a test room environment. 
The environmental test facility consisted of two 
realistically dimensioned rooms surrounded by 
temperature controlled voids. The constructions 
used in the test rooms are as would be found in a 
real dwelling (insulated cavity walls, with double 
glazed windows). Each room is heated by a 
central boiler, with two low-temperature hot 
water radiators in each room. Two dedicated 
PCs running LabVIEW monitor heating system 
temperatures, room air temperatures and void 
temperatures. 
An ESP-r model of the test rooms was developed 
using geometrical and construction data 
supplied by Honeywell. This model, along with 
ESP-r itself, was installed on the PC monitoring 
test room 1. The LabVIEW programs described 
previously were modified and linked to the 
existing test room data acquisition program. 
The ESP-r model was firstly calibrated using data 
from a heating sequence conducted on test 
room 1: the room was heated at full power 
(using one radiator) for two hours and allowed 
to cool for 3 hours. This sequence was repeated 
twice. The same heating sequence was simulated 
with the ESP-r model and predicted room 
temperature were deemed to be sufficiently 
close to that of the real room for the purposes of 
the experiment. 
The main experiment involved using simulation 
assisted control to predict the optimum start 
time for the test room 1 heating system. Data 
collection was at 1 minute intervals. At the start 
of the experiment, the test rooms were left in a 
free-floating state for 24 hours. The surrounding 
voids remained unconditioned throughout the 
experiment, while the adjacent test room (being 
used for another experiment) was maintained at 
24°C. The simulation controller was set to 
determine the switch-on time required to bring 
the room to a temperature of 25°C with 
a nominal 1200 W heat input.  
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In the preceding 24 hours the room temperature 
floated at around 21° C. Given a 25° C set-point 
and target of 11:00, ESP-r predicted a heating 
system switch on time of 10:20. Note that the 
room temperature was not at exactly 25°C at this 
time as the simulated temperature was 
compared to the set-point with a tolerance of 
±0.5°C. When the test room heating was 
switched on, the room reached 25°C at 11:06. 
The room temperature coincided with the ESP-r 
room temperature prediction at 11:02. It is clear 
that ESP-r slightly overpredicts the response of 
the test room to heating, with the prediction 
leading the actual room temperature. However, 
given the rudimentary calibration of the model, 
the predictive performance of the simulation 
assisted control tool was encouraging. Measured 
and simulated temperatures coincided with 
a temporal error of 5%, maximum error in 
temperature prediction was around 1°C and the 
actual set-point was reached 6 minutes later 
than predicted but within the time interval of 
one simulation time increment (10 minutes). 

 
 CONCLUSION 

 
This research was conducted to test the 
feasibility of using simulation to enhance the 
control capabilities of BEMS. Building and plant 
control functions amenable to simulation 
assisted control were identified. 
Modifications to the ESP-r system were 
undertaken to allow real-time simulation (i.e. 
simulation using data as it is gathered and which 
returns control actions for real-time 
implementation). This paper described an 
experiment undertaken with the prototype 
control system in full scale rooms within 
Honeywell’s test facility, demonstrating how 
such a system could be used to generate 
optimum start times. On a realistic scale 
experiment, it was shown that it is feasible to 
include simulation in control decision making. 
Typically, the simulation time (for a total of 
about 6 different simulations of the Honeywell 
test facility) was about 1 to 2 minutes on a low-
end Pentium PC. Although only optimum start 
was demonstrated, the structure is in place for 
other applications [4]. 
Further research is necessary to develop the 
idea further. This should focus on testing on a 
full scale building subject to external climate 
variation, integrating improved short-term 

climate prediction algorithms into the simulator, 
testing different control strategies, replacing 
LabVIEW with a modern BEMS system, 
developing the link to ESP-r or other simulators 
with BEMS standard protocols and developing 
calibration. 
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