ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering
Tome V (Year 2012). FASCICULE 2 [April-June]. ISSN 2067-3809

" Maja LUTOVAC, * Goran FERENC, > Vladimir KVRGIC, * Jelena VIDAKOVIC, > Zoran DIMIC

ROBOT PROGRAMMING SYSTEM BASED ON L-IRL PROGRAMMING
LANGUAGE

" LOLA INSTITUTE, KNEZA VISESLAVA 70A, BELGRADE, SERBIA

ABSTRACT: Contemporary robot languages should be simple for usage, compact, portable and easily integrated into complex
production systems. L-IRL (Lola Industrial Robot Language) is a robot Programming Language that was initially Pascal-based
programming language. Further development is intended to add new characteristics such as portability and to become easy
to learn and use. L-IRL is programming language based on the procedural paradigm and it is basis of the offline part of the
robot programming system. Developed Graphical User Interface of offline part provides user friendly usage. New language
parser is formed as LR(1) type parser (parser that reads input from left to right) and written with tools such as Bison and
Lex with the C++ programming language. The proposed solution gives logical and functional separation between different
phases of parsing and compiling. L-IRL is using XML as one of the main communication tools between different elements of
the system. XML is used as meta language for system specification file and as object code of the compiler so that new

software solution is more compact and portable.

KEyworbs: L-IRL, robot lan e, XML

INTRODUCTION

The main aim is to create a programming language
that is simple and easy to use and at the same time
compact and portable. L-IRL (Lola Industrial Robot
Language) is programming language based on the
procedural paradigm. L-IRL is the basis of the offline
part of the robot programming system. It is a Pascal-
based programming language with syntax and some
functional modifications. The further developments of
L-IRL were to obtain more compact, portable solution
so that the programming language can be easily to
learn and use. More details about existing and
previous versions of L-IRL can be found in [3, 6].

Aside from basic elements which exist in other
programming languages L-IRL contains specific
structures and language constructs based on DIN
66312 standard. Special language constructs proposed
by the standard are special geometric data types,
geometric expressions and move statements which
are used for robot movement control. Currently
defined robot movements are PTP (Point to Point)
movements and movements along mathematically
defined paths (CP movements) as well as approximate
PTP and CP motions. Currently present mathematically
defined paths are line and the circle. By specifying
parameters of the move statement it is possible to
change path, speed, and acceleration, orientation of
the end-effectors and other characterizes of the
movement.

Language parser is developed using software tools Lex
and Bison which generate lexical and syntax analyzer
of the source code. In previous version, parser and
compiler were developed using recursive descent
approach. In this version of L- IRL parsing is based on

LALR (Look Ahead Left to Right) algorithm which is
directly incorporated into Bison. Using these software
tools together with methodologies of the object
oriented programming, efficient structural and logical
refactoring of the source is achieved. RapidXML parser
for C++ was used for parsing and generating XML
code.

Offline programming system is a development
environment of the language compiler for robot
programming in an L-IRL programming language. GUI
of the offline part of robot control system combines
review of the robot system specifications, editor,
whose input is a program written in a robot language
L-IRL as well as graphical representation and
simulation of motions robot’s end-effectors.

For its main use, robot programming, handling many
language’s constructs such as: dynamic arrays, parallel
executions blocks and system variables definition
using XML is simplified. Portability is enabled by
developing interpreter and object code compiler
based on XML. After generation, it is sent on to the
real-time parts of the system [2, 4]. Real-time part of
the system is control system based on Real-Time Linux
platform on which is set OROCOS open architecture
software system, designed specifically for creating
applications of this type.

GRAPHICAL USER INTERFACE OF THE OFFLINE PART OF THE
ROBOT PROGRAMMING SYSTEM

In Figure 1 is given the appearance of a graphical user
interface of the offline part of the robot programming
system, through which the user enters a program,
written in an L-IRL Programming Language, and
generates as output another program with the same
meaning but written in a XML.

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 27

ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering

Left part of the main window (Figure 2) contains
information about the robot system specification. It
includes the ability to create a new variable, to change
the value of the already defined variables and to
delete variables from the system specifications.

om w008

Flgure 1'.“.Gra'phical user interface of the robot programming
system offline part

Systern Variables Exploner

Type Mame k value
F v.[var __|robtarget_test
M. war lola_15
v Rabot
real r_acc 0.326598
real r_acc_ori 0.0
real r_acc_ptp 0. 32656
- o r_act_rob
| 3 pse
. Status 2
> a_joint
¥ pose r_base
Ld s
> or
e oo
int 0.3
rea 0.0
rea oo
> joi
> ro

Figure 2. System specification

/homevladimir/projects/-if/buildssquare.prg* 3
program linemovement;

var
robtarget start := robtarget(position|200.0, 0.0, 300.0));
robtarget a = robtarget{position|200.0, 0, 500.0)};
robtarget b = robtarget{position|0.0, 500, 500.0));
robtarget ¢ := robtarget{position(0.0, 500.0, 300.0));
robtarget o = robtarget{position|400.0, 40.0, 0.0));

endvar

seq

R T R B .
write{std, "Move statements for visualization!!11%),
move ptp start speed_plp := 0.2 acc_ptp := 0.5 act_rob := "lola_15";
move lin a speed := 0.8 acc:=05 ¢ pr=50.0 act_rob := “lola_15";
move lin b speed := 0.8 acc = 0.5 c_speed act_rob := "lola_15" ;
move lin ¢ speed := 0.8 acc:=0.5 ccp=10.0 act_rob := "lola_15";
1 move lin start speed := 0.6 acc = 0.5 act_rob := “lola_15%;
endseq
endprogram

Figure 3. Editor of the robot programming system
offline part

Main window (Figure 3) takes as input program
written in L-IRL programming language. Program
continue to compiles and the output is the program
written in XML which have exactly the same values of
parameters and gives same information like as input.

Right part of the graphical user interface (Figure 4)
presented the simulation of robot movements and
graphical representations of successive positions of
the robot end-effectors. Before starting the robot, it is

important to check the program written in language
L-IRL which contains various commands of robot
motion and to prevent the execution of programs that
contains errors in the given path or position that may
damage the system or robot or made unwanted
movement.

o
g

//

Figure 4. Graphical representations of robot movements
L-IRL is procedural language with rigid syntax and
every program obeys certain structural rules. Program
written in L-ILR robot language includes the following
sections [3, 6]:

O Part for linking with extern files — import

something

Part for declaration of constants

Part for declaration of user defined types
Variable declaration part

Part for defining procedures and functions

O Main execution block.

L-IRL language defines standard data types (bool, int,
real, char, string) and geometric data types:

O Position - describes the position in millimeters
of the coordinate system in space relative to
the reference coordinate system. It is given
with three real numbers that describe the
coordinate values of x, y and z directions

O Orientation - given with three real numbers
that describe the orientation angles in degrees
of the coordinate system in space relative to
the reference coordinate system

O Pose - consists of components pos and ori,
which are position and orientation type,
respectively

O Mainjoint - describes position and orientation
of the end effectors in robot coordinates
(internal coordinates)

O Addjoint - defines the additional axis of the
robot

O Joint - consists of components m_jonit and
add_joint, which are mainjoint and addjoint
type, respectively

O Robtarget - describes the position and
orientation of the end effectors and the status
of the robot axes

Ooodogoad

28 2012. Fascicule 2 [April-June]

ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering

Derived data types, such as records or arrays, can also
be defined. Expressions in L-IRL are typical expressions
built from operators, variable/constant access and
other conventional. Several types of statements are
available in L-IRL such as assignments, conditional
branches (if and case), loops (for, while and repeat),
function and procedure blocks; L-IRL contains
previously defined functions and procedures (@ -
homogeneous transformation, inv. - inverse
homogeneous transformation, sin, cos, etc.)

L-IRL contains robot motion statements (move
statements) and statements that manage parallel
execution (wait, signal, etc) The move instructions
consist of parameters for determining the type of
path (PTP - point to point, LIN - linear or CIRCLE), the
target point (and an additional secondary in a circular
motion), speed and name of the robot. There are
optional parameters that can be specified as (ACC, ACC
PTP, C ORI, C, speed, speed, etc.), which define the
characteristics of the movement. [3].

System specification

System specification file contains information about
the number and names of the robots that participated
in robotic operations. System specification file is used
for describing behavior of certain built-in structures of
the language and also to represent system variables of
the program in execution, like position of robot,
speed, acc, etc . System specification file — sysspec.xml
is written in XML.

Beside the source code in L-IRL language, in order to
interpret and compile the source code, system
specification file needs to be present in the execution
folder. Compiler translates source code of the
program in L-IRL together with system specification
file into XML based object code.

Besides compiler of L-IRL, this file is using bay the
robot controller, which updates the system variables
values when program is executing.

DTD - Document Type Definitions

System specification file — sysspec.xml is written in
XML which is defined by special syntax rules i.e. Meta
language. Since this file can be changed by L-IRL
programmer it is necessary to define rules of the XML
syntax used in this file. Approach used for describing
the rules of the XML syntax is called Document Type
Definitions [1] or DTD.

A document type definition provides a list of the
elements, attributes, notations, and entities contained
in a document, as well as their relationships to one
another. DTDs specify a set of rules for the structure
of a document. DTDs can be included in the file that
contains the document they describe, or they can be
linked from an external URL. Such external DTDs can
be shared by different documents and Web sites or

other software. DTDs provide a means for
applications, organizations, and interest groups to
agree upon, document, and enforce adherence to
markup standards.

XML is one of the main communication tools between
different elements of the robot programming system.
After generation of the XML object code on the offline
part of the system, it is sent on to the real-time parts
of the system [2, 4].

Abstract syntax tree (AST) matches DOM tree of the
XML object code document. Interpretation of the
object code by real-time virtual machine is achieved by
traversing a DOM tree of the XML document and
executing statements and expressions coded within
tree nodes. This way the resulting object code has
same semantics as source code of the program.

PROGRAM

|
I LI 1

const

Figure 5. Object code basic structure

Basic structure of the object code is divided in three
basic parts. Object code starts with root node
<program> which has three child nodes (Figure 5):
O <system spec> - part which matches content
of the system specification file,
O <symbols> - part which provides information
about defined symbols and
O <seqg> or <par> - part which defines sequential
or parallel main execution block.
Each of these nodes defines separate section of the
generated XML object program file. Node <system
spec> defines section of XML object file that contains
content of the system specification file. Content of
this node is defined in compilation phase by adding
the root node of the system specification file to the
root node of object program. Second node <symbols>
defines section which contains definitions of variables,
constants, procedures and functions. Third child node
of the root node, defines section which contains
translated statements, jump statements, etc. Element
<seq> defines sequential execution of the main
execution block while <par> defines parallel execution
of the main execution block. Syntax check of the
object code is enabled with the use of XML Schema.
This way the syntax check is same as validation of the
object code using XML Schema validation.
Basic Statements
Basic statements of the object code are statements
which define structure of generated XML file.

2012. Fascicule 2 [April-June] 29

ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering

Generated XML file has node <program> as root node.
As mentioned earlier, root node has three child bodes:
<system spec>, <symbols> and <seq> or <par>. Each of
these nodes defines separate section of the generated
XML object program file. Node <system spec> defines
section of XML object file that contains content of the
system specification file. Content of this node is
defined in compilation phase by adding the root node
of the system specification file to the root node of
object program. Second node <symbols> defines
section which contains definitions of variables,
constants, procedures and functions. Third child node
of the root node, defines section which contains
translated statements, jump statements, etc. Element
<seq> defines sequential execution of the main
execution block while <par> defines parallel execution
of the main execution block.

Jump Statements

In order to generate object code for some statements
(loops, if statement,) labels need to be defined. Labels
define target address for jump instructions and they
are defined with tag: <label>. Unconditional jump
instruction is defined with tag <jmp>. As required
attribute, jump instruction takes value of the target
label. Conditional jump is performed with the
instruction <jmpif>. Similar to unconditional jump
instruction, label value has to be provided in the form
of attribute. Jump condition is provided as a child
node of the <jmpif> node.

Special Statements

Move statements are provided with special syntax for
defining all move parameters. They are defined with
tag: <move>. They are provided with special syntax
due to define parameters that represent all necessary
information for robot movement control. They consist
of parameters for determining the type of path - PTP,
LIN, CP which is followed by data of geometric type
describing the target and, if necessary, extra point of
the path. With these parameters, there are additional
parameters (ACC, ACC PTP, C ORI, C SPEED, SPEED etc.)
that are used optionally and they define the
characteristics of the movement [3].

Using XML is a simplified representation of dynamic
arrays, parallel execution units, functions and
procedures as well as the definition of system
variables. Developing interpreter and object code
compiler based on XML enables portability. XML is
used to represent the specification of the robot, as
well as for representing object code that is the main
way of communication between different parts of the
system for robot control.
CONCLUSIONS

This paper introduced a new approach for designing
and developing offline part of the robot programming

30

system with special emphasis on development of

interpreter and compiler. The new version is more

compact and portable. Graphical user interface
provide simple usage and programming environment.

One use of XML as object code is shown in this paper.

XML code is generated using RapidXML parser for C++.

Further work is focused on development of real-time

virtual machine which interprets XML object code.

REFERENCES

[1] Harold E. R, XML Bible, IDG Books Worldwide, Inc
W3C, Extensible Markup Language (XML) 1.0 (Fifth
Edition), http://www.w3.0rg/TR/REC-xml/

[2] Kaplarevi¢ V., Milicevi¢ M., Vidakovi¢ J., Kvrgi¢ V.
(2011), New approach for designing robot
programming system based on L-IRL programming
language, 10th Anniversary International Conference
on Accomplishments in Electrical and Mechanical
Engineering an Information Technology DEMI, Banja
Luka, ISBN 978-99938-39-36-1, pp. 873-876

[3] Kvrgi¢ V. M., Development of intelligent system for
management and programming of industrial robots,
(in Serbian), PhD dissertation, University of Belgrade,
Faculty of Mechanical Engineering, 1998.

[4] Milicevi¢ M., Kaplarevi¢ V., Dimi¢ Z., Cvijanovi¢ V.,
Bucan M. (2011), Development of distributed control
system for robots control based on real-time LINUX
platform, 10th Anniversary International Conference
on Accomplishments in Electrical and Mechanical
Engineering an Information Technology DEMI, Banja
Luka, ISBN 978-99938-39-36-1, pp. 813-818

[5] Pavlovi¢ M. A., High Level Programming Language
for multi-robotic operations, (in Serbian), M. Sc
thesis, University of Belgrade, Scholl of Electrical
Engineering, 1994

ASTATrancaCORIBISS rgcicuile]|

NS jascnculez
a8 DEnE §§

o
B
="
e

QE
=)
Qg

EEDD
SEEE |E|m 0000 &8
e @sa 00w §

lname! DN}]]NID!% JO uﬁ%&ﬂg &

I
(V)

ACTA TECHNICA CORVINIENSIS - BULLETIN of ENGINEERING

066

ISSN: 2067-3809 [CD-Rom, online]

copyright © UNIVERSITY POLITEHNICA TIMISOARA,
FACULTY OF ENGINEERING HUNEDOARA,
5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA
http://acta.fih.upt.ro

2012. Fascicule 2 [April-June]

