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ABSTRACT: The paper herein deals with the response of an infinite wire on viscoelastic 
support under moving harmonic load in order to point out the basic features of the 
overhead contact wire system (catenary). To this end, the Green’s function method is 
applied. The wire response under a stationary harmonic load is similar to the one of 
the system with a single degree of freedom, excepting the phase resonance. When the 
harmonic load moves at sub-critical velocities, the resonance frequency decreases and 
the wire response becomes higher. At the over-critical velocities, the elastic waves do 
not propagate in front of the harmonic load.  
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INTRODUCTION 
For the high speed trains, the pantograph-catenary 
system is critical for the stable current collection. 
Indeed, when the train velocity increases, the 
variation in contact force at the pantograph-catenary 
interface also increases and many undesirable effects 
occur: loss of contact, arcing and wear [1, 2]. 
The pantograph-catenary interaction has been 
intensively studied in the last 40 years once the 
trains speed has much increased [3–5]. From 
mechanical view point, the interaction between a 
moving pantograph and catenary is a part of the field 
of the classical ‘moving load problem’ [6]. In fact, 
such problems deal with the vibration of a moving 
sub-system on an elastic structure. Prior to solve this 
question, it is interesting to highlight the structure’s 
response to a moving load [7, 8].  
Many theoretical models of the catenary take into 
consideration an infinite uniform wire on viscoelastic 
support (Winkler support). This model is simpler 
because the influence of the elasticity variation due 
to the supports and hangers is neglected. The results 
derived from this model are basic and they can be 
used for a comparison, as did A. Metrikine [7] in 
order to highlight the non-linear effect brought 
about by the hangers. 
In this paper, the response of an infinite wire on 
viscoelastic support due to a harmonic moving load is 
analyzed using the Green’s functions method. This 
method has been successfully applied by the author 
to investigate the response of both ballasted and slab 
track under moving loads [9, 10]. 
THE MECHANICAL MODEL 
It considers the case a simple catenary system (Figure 
1), consisting of the equidistant supporters (1), the 
cable arms (2), the messenger wire (3), the hangers 

(4) and the wire (5). Both messenger and contact 
wires are stressed. 
Further, the simplest model of catenary will be 
considered, namely an infinite wire on a continuous 
elastic support (fig 2).  The catenary wire has the 
linear mass m and it is tensed by the force T. The 
elastic support contains elastic and of damping 
elements with linear characteristics, uniformly 
distributed along the catenary. A harmonic force of 
amplitude P and angular frequency � acts upon the 
wire and moves at a constant speed V.   

  
Figure 1. Simple catenary system: 1. supporter; 2. steady 

arm; 3. messenger wire; 4. hanger; 5. contact wire. 

 
Figure 2. Mechanical model of the catenary system 
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The wire movement is reported to the fixed system 
Oxz. Also, a moving system attaches against the force 
O1x1z with  

1xVtx +=                           (1) 
The wire motion equation reported to the fixed 
referential is  
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where k is the elastic constant, and a – the damping 
constant of the continuous elastic support.  
Also, the boundary conditions have to be considered 
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Actually, the steady state behaviour is interesting 
and due to that, the change of variable (1) is 
recommended, where the motion is reported to the 
moving referential. Practically, the following 
relations will be applied  
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The equation of motion (2) and the boundary 
conditions (3) become  
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Considering the steady state harmonic behaviour, the 
complex variables  
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have to verify the following equation 
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and the boundary conditions 
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To solve the problem defined by the equation (8) and 
the boundary conditions (9), the Green’s functions 
method may be applied [11]. In fact, the solution is 
given as 
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where G(x1, ξ) is the Green’s function. This function 
represents the wire response in the x1 section of the 
moving reference frame, due to a unit harmonic 
force applied in the � section of the same moving 
reference frame. It has to be observed the fact that 
the wire response is defined by the Green’s function 
and this function is the receptance. 
The Green’s function can be built as a linear 
combination of the eigenfunctions of the differential 
operator of the equation (8). To find this function, 
the starting point is the homogenous equation 
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and its solution  
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Then, the characteristic equation is obtained 
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After some calculations, this equation takes the 
following form  
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The solutions of the characteristic equation 
represent the eigenvalues  
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There are two cases, the so-called sub-critical and 
overcritical cases. 
1. The sub-critical case (α < 1) – the force velocity is 
smaller than the velocity of the elastic wave in the 
contact wire; the critical velocity has value of c. In 
this case, the eigenvalues real parts have opposite 
signs 

,0Re 1 <λ  .0Re 2 >λ                     (19) 
In fact, the Green’s function G(x1, ξ) has two forms 
satisfying the boundary conditions   
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where −A  and +A depend on the ξ variable. These 
functions will be calculated using both continuity and 
jump conditions.  
The Green’s function has to be continuous in x1 = ξ  
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Its derivation in respect to x1 has a jump in x1 = ξ 
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Upon solving the equations (21) and (23), it is 
obtained  
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and then, the Green’s function 
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2. The overcritical case (α>1) represents the 
situation when the harmonic force travels at a higher 
speed than the wave propagation speed through the 
contact wire. In this case, the real part of both 
eigenvalues has positive sign  

0Re 2,1 >λ .                            (26)             
The Green’s function takes the following forms 
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0),( 1 =ξ+ xG  for ∞<<ξ 1x , 
where A1 and A2 depend also on ξ. 
The continuity condition of the function and the one 
of the derivate jump lead to the following equations 
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Solving the equations (28), it obtains  
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Finally, the Green’s function can be written as 
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for ξ<<∞− 1x                       

0),( 1 =ξ+ xG  for ∞<<ξ 1x .    
The latter can be also written as  
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where H(.) is Heaviside’s unit step function. Equation 
(31) shows the fact that in front of the moving 
harmonic load the wire is not perturbed by the 
elastic waves. 
NUMERICAL APPLICATION 
Further on, using the above method based on the 
Green’s function, the results of the numerical 
simulation derived from a particular wire on 
viscoelastic support are presented.   
The following data have been considered [7]: m=1.1 
kg/m, T=15 kN, k=0.4 kN/m2 and a=0.5 Ns/m2. In 
fact, the natural frequency of the wire on 
viscoelastic support is 3 Hz, the damping degree - 
0,012 and the wave propagation speed – 117 m/s.  
Figure 3 shows the wire receptance at the point of 
the stationary unit harmonic force (α = 0) versus the 
relative angular frequency (Ω = ω/ω0). Three values 
of the damping degree are considered. As it can be 
observed, the wire response has a peak similar to the 
one of a system with single degree of freedom. 
However, the phase resonance occurs for the π/4 
value instead of π/2. Increasing the damping, the 
receptance becomes lower around the resonance 
frequency. 
Figure 4 shows the influence of the speed of the 
moving harmonic load on the receptance of the wire 
at the point of the unit harmonic force. Only the 

reference value of the damping degree is taken into 
account (ζ = 0,012). Actually, only the range of the 
sub-critical speeds is considered in this simulation. It 
can be seen that by increasing the speed of moving 
harmonic load, the resonance frequency of the wire 
decreases. In addition, the receptance of the wire 
increases around resonance. 

 
Figure 3. Wire response due to a stationary harmonic force: 

(a) receptance modulus; (b) recepance phase. 

 
Figure 4. Influence of the speed on the wire response 

 
Figure 5. Cross receptance of the wire 
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Figure 5 presents the cross-receptance of the wire for 
both sub-critical (α = 0.6) and overcritical velocities 
(α = 1.2). The angular frequency of the moving 
harmonic load corresponds to Ω = 0.8. At sub-critical 
velocity, the elastic waves of the wire are 
propagating waves, meanwhile at the overcritical 
velocity, the wire experiences standing waves behind 
moving load. 
CONCLUSIONS 
In this paper the dynamic behaviour of an infinite 
wire on visco-elastic support due to a moving 
harmonic load is studied. To this end, the Green’s 
functions method has been applied. 
There are two cases, the sub-critical one, when the 
force velocity is lower than the critical velocity (the 
elastic wave velocity) and the over-critical one, when 
the velocity of the force is higher than the critical 
velocity.  
The wire response under a stationary harmonic load 
is similar to the one of the system with a single 
degree of freedom, excepting the phase resonance. 
When the harmonic load moves at sub-critical 
velocities, the resonance frequency decreases and 
the wire response becomes higher. Also, the 
propagating waves travel at both ends of the wire. At 
the overcritical velocities, the wire has only standing 
waves behind moving harmonic load.  
Further research will extend the application of this 
method (Green’s functions method) to the case of 
the pantograph-catenary interaction. 
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