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Abstract: Mono-symmetric plate girders are often used in simply supported composite bridges to eliminate local plate buckling in the compression 
flange during construction.  This causes the neutral axis of the plate girder to shift downwards subjecting more of the web to compressive stresses due 
to bending.  In slender webs this increases the possibility of local buckling in the compression part of the web during construction.  However, depending 
on the slenderness (width-to-thickness ratio) of the web, the post-buckling reserve capacity may accommodate this local buckling within the elastic 
limit of the web for during construction loads.  Hence, this would allow for the use of more slender webs in composite plate girder construction without 
the need for longitudinal web stiffeners or the reduction of the overall composite section due to local plate buckling in the web.  Recommended values 
of stress level are given for mono-symmetric plate girders in the non-composite stage based on the results of a non-linear finite element analysis. 
Keywords:  composite bridges, effective width, FEA, local plate buckling, mono-symmetric sections, plate girders, stress gradient, stress level 
 
 

INTRODUCTION 
Plate girders in conjunction with a reinforced concrete slab are often 
used as composite plate girder bridges in positive bending.  This has 
the advantage of rthe possibility of local plate buckling in the plate 
girder’s web and compression flange as a result of composite action 
under service loads.  In addition to this, the during construction loads 
acting on the plate girder section alone, DL1, may be designed to 
allow for local buckling in the web while keeping the stresses within 
the elastic limit of the plate girder section during construction. 

(a) Un-shored non-composite section with ineffective concrete slab (DL  only)

(b) Un-shored composite section after hardening of concrete slab (DL +DL +LL)

Gross steel section Effective steel section Stress distribution (DL )

Composite section Stress distribution (DL +LL)
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Figure 1: Stress distribution in composite construction 
For plate girders with webs having a width-to-thickness ratio in the 
very slender range, the critical stress is well below the yield stress, and 
under the effect of construction loads only, Figure 1(a), the post-
buckling state of the slender web may cause a nonlinear stress 
distribution, but the stresses in the web may still be in the elastic 
range.  This would allow for the use of more slender webs for 
composite plate girders keeping in mind that the neutral axis will shift 

upwards with the onset of composite action, as shown in Figure 1(b).  
Hence, preventing residual strains due to the yielding of the section 
during the construction non-composite stage and the after 
construction composite stage.  The stress distribution for both the 
non-composite and composite stages for un-shored construction is 
shown in Figure 1. 
Other researchers to study composite I-girders are Gupta [1], Gupta et 
al. [2], Basker et al. [3], and Yakel and Azizinamini [4]. Recent 
research was also conducted on I-section flexural beams by 
Shokouhian and Shi [5] and Lee et al. [6]. 
LOCAL PLATE BUCKLING 
Local plate buckling occurs in slender plate elements when the 
compressive stress in the plate element exceeds the critical plate 
buckling stress of the plate element, as shown in Figure 2.  After the 
onset of plate buckling, a wave-like propagation of out-of-plane 
deformations breaks out increasing in amplitude with the increase in 
loading.  This causes the compressive stresses to redistribute in the 
plate element, concentrating in the regions supported by stable 
boundary conditions. Due to the loss of in-plane stiffness of the 
unsupported regions, compressive and tensile bending stresses 
develop through the thickness of the plate, fluctuating along the 
length of the plate.  The stress at the stable edges gradually increases 
with the increase in loading after the onset of local buckling up to the 
yield stress, σy.  Once the edge stress has reached the yield stress, the 
plasticization of the plate element propagates in the nearby regions 
till the supported parts of the plate element are assumed to have 
reached the yield stress.  Whereas, the unsupported unstable internal 
part of the plate element is assumed to be ineffective.  Hence, the 
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plate element does have a post-buckling reserve capacity which can 
be within the elastic limit of the element if the edge stress does not 
reach the yield stress capacity. 
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Figure 2: Concept of effective width 

The elastic buckling stress, σcr, of slender plates as derived by von 
Kàrmàn et al. [7] is 
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which is inversely proportional to the square of the width-to-
thickness ratio, b/t, of the plate element.  The plate buckling factor, k, 
depends on the longitudinal boundary conditions of the plate element 
and the normal stress distribution in the plate, shown in Figure 1.  
Expressions for k for different boundary conditions can be found in the 
Eurocode EC3 EN 1993-1-1:2003 [8] or the Egyptian Code of Practice 
for Steel Construction and Bridges ECOP-ASD [9]. The modulus of 
elasticity, E, can be taken as 210,000 MPa and Poisson’s ratio,  can be 
taken as 0.3.   
From the expression for the uniform elastic critical stress, given in Eq. 
(1), acting on a plate with a width-to-thickness ratio of b/t we get 
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Assuming an effective width of be and a uniform stress acting on it of 
σe, which can have a value anywhere from the critical stress σcr to the 
yield stress σy as shown in Figure 2, then by analogy we get 
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Hence, the ratio of the effective width be, to the original width b, 
known as the effective width parameter  ρ, is 
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Assuming that the average uniform stress of the nonlinear post-
buckling stress distribution is σav as shown in Figure 2, the effective 
width is assumed to be the width subject to a stress equal to the edge 
stress, σe, of the nonlinear stress distribution such that it develops a 
strength equal to the average stress acting on the whole width.  
Hence, 

 avee bb σσ =     (5) 
giving 
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Taking the non-dimensional slenderness parameter λn as 

 Et
b

k
e

cr

e
n

σ
π

ν
σ
σλ 2

2)1(12 −
==

                              (7) 
and substituting this into Eq. (6) gives 
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To account for the effect of residual stresses in the moderately slender 
and the non-compact slenderness ranges, the American Iron and 
Steel Institute (AISI) [10] suggests the following expression for the 
average stress. 
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Both Eqs. (8) and (9) are plotted in Figure 3. 

 
Figure 3: Normalized plate buckling curves 

EFFECT OF STRESS GRADIENT ON LOCAL PLATE BUCKLING 
To include the effect of stress gradient in the plate element due to 
combined compressive and flexural stresses in the member, as shown 
in Figure 4, the effective width parameter, ρ, is assumed to take the 
form 
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where x and y can be determined from the limits of b/t for stiffened 
slender plate elements in pure compression, ψ = +1.0, and pure 
bending, ψ = -1.0.  This is the same method used by El-Mahdy and 
Abu-Hamd [11, 12, and 13] to derive the current equation for the 
effective width of stiffened slender plate elements subject to a stress 
gradient in the Egyptian Code of Practice for the Design of Steel 
Construction and Bridges [9].   
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Figure 4: Schematic representation of stress gradient, ψ, due to combined 

compressive and flexural stresses 
For example, using the limits for pure compression and pure bending 
given in the Eurocode EC3 [6],  
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and taking k = 4.0 for the case of pure compression and k = 23.9 for 
the case of pure bending and assuming σe = σy gives the values 
0.144 and 0.048 for x and y, respectively.  Hence, according to the 
limits of the EC3 [8]: 
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Factorizing and approximating this leads to the expression 
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which is close to the expression given in the EC3 EN 1993-1-5:2006 
[14] 

 
2

)(30550

n

ne

e

av .
b
b

λ
ψλρ

σ
σ +−

===
                         (14) 

The normalized average stress for the cases of ψ = +1.0 and ψ = -
1.0, according to Eq. (12), are plotted in Figure 3. 
FINITE ELEMENT ANALYSIS 
A finite element parametric analysis, using COSMOS 2.6 software, was 
conducted on models of plate girders having a web depth of 1000 mm 
and varying the web thickness, tw, from 5 mm to 11 mm giving a 
width-to-thickness ratio for the web varying from 200 to 91.  The 
compression flange was kept constant in the non-compact range 
having a size of 200 x 11 mm, whereas, the size of the tension flange 
was increased to achieve a stress gradient in the web of ψ = -1.0, -
0.8, -0.6, and -0.4, as shown in Figure 5. 
A model with a simply supported span of length L = 10 m was used.  
In the actual finite element model the height of the web was modeled 
having a depth of 1000 mm plus half the thickness of both the 

compression flange and the tension flange.  This causes a slight 
decrease of the stress gradient in the web due to a minor change in 
the position of the model’s neutral axis, but this decrease is 
negligible.  Both flanges were laterally supported as shown in Figure 
6(a) to prevent any out-of-plane lateral torsional-flexural buckling 
occurring in the compression flange.  Elastic-plastic shell elements 
were used to model the flange and web plate elements, however, the 
end parts of the top and bottom flanges were stiffened by increasing 
their thickness and taken as elastic shell elements to overcome local 
deformations due to loads applied to these flanges.  The material of 
the model was taken as elastic-perfectly plastic with a modulus of 
elasticity of 210 GPa and a yield stress of 350 MPa. 
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Figure 5: Schematic representation of parametric plate girder  

ross-sections 

a) 

b) 
Figure 6: Typical finite element model and normal stress distribution of 
linear analysis; a) Finite element model; b) Deformed shape and stress 

distribution 
The compression and tension flanges of each model were loaded to 
cause a moment equal to the yield capacity of the section. This was 
achieved by applying equivalent end compression and tension forces 
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in the top and bottom flanges, respectively, according to the 
following formulas: 
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This gives a yield moment, My, of 
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where Fet and Feb are the equivalent compression and tension forces 
assumed to be concentrated at the centroids of the flanges that cause 
a moment equal to the yield moment capacity of the section, 
respectively; Atf and Abf are the areas of the top and bottom flange 
plates, respectively; and hw and Aw are the depth and area of the 
model’s web plate, respectively. 
The results of the linear analysis conducted on the finite element 
models verify that the gross stiffness of the model, calculated from 
the midpoint deflection, ∆, compare accurately with the analytic 
expression for a simply supported beam subject to a uniform moment, 
M, viz., I = ML2/8E∆.  The position of the neutral axis can also be 
determined from the normal stress distribution in the deflected 
model.  Excessive stresses were noted in the flanges near the loaded 
edges. Figure 6(b) shows the normal stress distribution in the 
deformed model with a web thickness of 5 mm or a web slenderness 
of 200 and a bottom flange sized to give a stress gradient of ψ = -0.6. 
A nonlinear analysis which follows the Newton-Raphson incremental-
iterative procedure was used to detect the propagation of local plate 
buckling in the slender web.  An initial 1 mm out-of-flatness at the 
center-point of the web was used in the model to initiate local web 
buckling. 
Finally, a finite element analysis of the composite section, shown in 
Figure 7, using a slab of 2000 x 200 mm with a concrete cube 
strength, fc’, of 40 MPa and uniformly loaded above the slab gave 
approximate values of the residual capacity of the composite section 
in the after construction phase.  

 
Figure 7: Normal stress distribution in composite section 

DISCUSSION OF RESULTS 
Figure 8 illustrates the in-plane membrane normal stress distribution 
and the out-of-plane local plate buckling of the web in flexural 
compression for the model with a web slenderness of 200 (i.e., tw = 5 
mm) and a stress ratio of ψ = -0.6.     

a)

b) 

c) 

d) 
Figure 8: Deformed shape and normal membrane stress distribution for 

model with web slenderness 200 and ψ= -0.6; a) Stress level 1.72σcr b) 
Stress level σy c) Stress distribution along the web at different stress levels 

d) Load-deflection curves 
At a stress level of 1.72σcr, shown in Figure 8(a), it can be seen that a 
notable amount of local buckling in the compression part of the web 
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occurred without causing any distortional buckling in the non-
compact adjacent compression flange, and without exceeding the 
elastic limit as shown by the maximum compressive stress of 146 
MPa. Whereas, for a stress level of σy = 350 MPa, shown in Figure 
8(b), the local buckling of the web in compression is greatly magnified 
causing distortional buckling in the adjacent compression flange.   
 

a) 

b) 

c) 

 
Figure 9: Deformed shape and normal membrane stress distribution for 

model with web slenderness 125 and ψ = -0.6; a) Stress level 1.47σcr ; b) 
Stress level σy; c) Stress distribution along the web at different stress levels; 

d)Load-deflection curves 
Figure 8(c) shows the stress distribution along the web for the same 
model at different stress levels. It can be seen that the stress 
distribution along the web remains relatively linear even after local 

buckling has initiated at the critical stress level, however, 
considerable nonlinearity in the stress distribution occurs near the 
end of the nonlinear analysis as the stress level approaches the yield 
stress. This is also demonstrated by the load-deflection curves shown 
in Figure 8(d).  It can also be noted that the neutral axis tends to shift 
upwards with the occurrence of local plate buckling in the web and 
the nonlinear stress distribution. 
 

a) 

b) 

c) 

d) 
Figure 10: Deformed shape and normal membrane stress distribution for 
model with web slenderness 100 and ψ = -0.6; b) Stress level 1.09σy; 

c)Stress distribution along the web at different stress levels; d)Load-
deflection curves 

Figure 9 shows the deformed shape and normal membrane stress 
distribution for the model with a web slenderness of 125 (i.e., tw = 8 
mm) and a bottom flange proportioned to give a stress ratio of ψ = -
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0.6.  A slight amount of local web buckling can be detected at a stress 
level of 1.47σcr where the maximum compressive stress is 337 MPa 
and hence is still below the yield stress, as shown in Figure 9(a).  
However, at a stress level of σy the local buckling in the web is 
magnified causing distortional buckling in the compression flange, as 
shown in Figure 9(b).  Figure 9(c) shows the stress distribution along 
the web for this model at different stress levels.  It can be seen that 
the stress distribution along the web remains relatively linear even 
after local buckling has initiated at the critical stress level, however, a 
slight nonlinearity in the stress distribution occurs near the end of the 
nonlinear analysis as the stress level approaches the yield stress. The 
slight nonlinearity is again shown in the load-deflection curve in 
Figure 9(d). 
Finally, Figure 10 shows the deformed shape and normal stress 
distribution for the model with a web slenderness of 100 (i.e., tw = 
10 mm) and a lower flange proportioned to give a stress ratio of ψ = 
-0.6.  At a stress level of ≈σcr the maximum stress is close to σy and 
very little local web buckling has occurred, as shown in Figure 10(a).  
In fact, at a stress level of 1.09y the local buckling is still hard to detect 
although the section has yielded, as shown in Figure 10(b).  Figure 
10(c) shows the stress distribution along the web for this model at 
different stress levels.  It can be seen that the stress distribution along 
the web remains linear up to the end of the nonlinear analysis as the 
stress level approaches the yield stress.  This linearity is also depicted 
in the load-deflection curves shown in Figure 10(d). 
The recommended values of stress level with respect to the critical 
stress for other stress gradients as determined by the nonlinear finite 
element analysis are listed in Table 1 and are plotted in Figure 11. 

Table 1: Recommended values of stress level  
with respect to critical stress σ1/σcr 

       hw/tw 

   ψ 200 167 143 125 111 100 

-1.0 1.56 1.50 1.39 1.00 --- --- 
-0.8 1.64 1.59 1.49 1.36 1.00 --- 
-0.6 1.72 1.63 1.57 1.47 1.35 1.00 
-0.4 1.76 1.68 1.6 1.54 1.44 1.16 

 

 
Figure 11: Recommended values of stress level  

for mono-symmetric girders 
A process of curve fitting has led to the derivation of the formulas 
given in Eq. (18) for the recommended values of stress level as a 
function of the web slenderness ratio for each value of ψ.  The 

formulas given in Eq. (18) are also compared to the curves obtained 
for the nonlinear finite element analysis in Figure 12.  The maximum 
error between these two curves is less than 6% and is conservative for 
all values of σ1/σcr. 
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Figure 12: Comparison of Eq. (18) with the FEA results 

From the finite element results of the composite sections, it can be 
noted that increasing the thickness of the web results in a minor 
increase in composite capacity. Whereas using a greater value of 
stress gradient (i.e., ψ = -0.4) greatly increases the composite 
capacity 2–3 times, and any loss in the capacity of the non-composite 
section due to the buckling of the slender web can be compensated 
for by using shoring during construction. 
CONCLUSION 
The finite element parametric analysis shows that mono-symmetric 
non-composite plate girders with slender webs can be stressed 
beyond the critical stress, initiating the onset of local buckling of the 
web in flexural compression, without exceeding the elastic limit.  
However, due to the occurrence of excessive local buckling 
deformations in slender webs causing distortional buckling in the 
compression flange the following stress limits are recommended 
depending on the stress ratio in the web; 1.7σcr for webs in the very 
slender range decreasing to 1.0σcr for webs in the less slender range.  
Symbols 
Abf = area of bottom flange plate 
Atf = area of top flange plate 
Aw = area of web plate 
b = plate width 
be = effective width 
E = modulus of elasticity 
fc’ = concrete cube strength 
Feb = equivalent tensile force in bottom flange 
Fet = equivalent compressive force in top flange 
hw = depth of web plate 
k = plate buckling factor 
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L = span of girder 
M = bending moment  
My = yield moment of girder 
t = plate thickness 
tw = thickness of web plate 
x,y = variables 
∆ = midpoint deflection 
ε = yσ/235  

λn =non-dimensional slenderness parameter 
ν = Poisson’s ratio 
ρ = effective width parameter 
σ = stress 
σ 1 = larger edge compressive stress 
σ 2 = smaller edge compressive stress or tensile stress 
σ av = average stress 
σ cr = critical buckling stress 
σ e = edge stress 
σ y = yield stress 
ψ = stress gradient 
References 
[1.] Gupta, V.K., “Development of section classification criterion and 

ultimate flexural equation for composite I-girders”, Doctoral 
Dissertation, Saitama University, Japan, 2006. 

[2.] Gupta, V.K., Yoshiaki, O., and Nagai, M., “Development of web 
slenderness limits for composite I-girders accounting for initial 
bending moment”, Doboku Gakkai Ronbunshuu A (JSCE Journal of 
Structural and Earthquake Engineering), Vol. 62, No. 4, pp. 854-864, 
2006. 

[3.] Basker, K., Shanmugan, N.E., and Thevendran, V., “Finite-element 
analysis of steel-concrete composite plate girder”, J. Struct. Eng., 
ASCE, Vol. 128, No. 9, pp. 1158-1168, 2002. 

[4.] Yakel, A.J. and Azizinamini, A., “Improved moment strength 
prediction of composite steel plate girders in positive bending”, J. 
Bridge Eng., ASCE, Vol. 10, No. 1, pp. 28-38, 2005.  

[5.] Shokouhian, M. and Shi, Y., “Classification of I-section flexural 
members based on member ductility”, Journal of Constructional Steel 
Research, Vol. 95, April, pp. 198-210, 2014. 

[6.] Lee, C.H., Han, K.H., Uang, C.M., Kim, D.K., Park, C.H., and Kim, J.H., 
“Flexural strength and rotation capacity of I-shaped beams fabricated 
from 800 MPa steel”, J. Struct. Eng., ASCE, Vol. 139, No. 6, pp. 1043-
1058, 2013. 

[7.] von Kármán, T., Sechler, E.E., and Donell, L.H., “Strength of thin plates 
in compression”, Transactions of the American Society of Mechanical 
Engineers, Vol. 54, No. APM-54-5, p. 53, 1932. 

[8.] Eurocode 3, Design of steel structures – Part 1.1 General structural 
rules (EN 1993-1-1:2003), European Committee for Standardization 
(CEN), Brussels, Belgium, 2005. 

[9.] ECOP-ASD, Egyptian Code of Practice for Steel Construction and 
Bridges – Allowable Stress Design, Egypt, 2001. 

[10.] American Iron and Steel Institute, Specification for the design of cold-
formed steel structural members, AISI, Washington DC, 2007. 

[11.] Abu-Hamd, M.H. and Elmahdy, G.M., “The effective width of slender 
plate elements in plate girders”, Journal of Engineering and Applied 

Science, Faculty of Engineering - Cairo University, 50(2): 259-278, 
2003. 

[12.] Elmahdy, G. and Abu-Hamd, M., “New formula for the effective width 
of slender plate elements”, Proceedings of the CSCE Annual 
Conference - 6th Structural Speciality Conference, Quebec City, 
Quebec, Canada, 2008.  

[13.] El-Mahdy, G. and Abu-Hamd, M., “Local buckling of slender plate 
girders in composite bridges”, Proceedings of the SSRC Annual 
Stability Conference, Orlando, Florida, USA, 2010. 

[14.] Eurocode 3, Design of steel structures – Part 1.5 Plated structural 
elements (EN 1993-1-5:2006), European Committee for 
Standardization (CEN), Brussels, Belgium, 2006. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
copyright ©  

University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara, 
5, Revolutiei, 331128, Hunedoara, ROMANIA 

http://acta.fih.upt.ro 


