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Abstract: In this paper an equilibrium problem of two-layered curved composite beam with flexible shear connection is considered. Both end cross 
sections of the considered curved beam are radially guided. The applied load acts in radial direction. Three types of load are considered. In Example 1 
the curved composite beam is partially loaded by uniform radial load. In Example 2 on the whole upper part of the curved beam is loaded by uniform 
radial load. The third example deals with the concentrated radial load. In all three cases the solution for radial displacement and cross sectional 
rotations are obtained by Fourier’s method and by the application of derived formulae the slip and the normal force, the shear force and the bending 
moment are determined. 
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INTRODUCTION 
Composite members have long been used in many civil engineering 
structures. In general they consist of two or more elements of the 
same of different materials connected by some means to form a single 
structural unit [5]. The problem of layered straight beam with 
imperfect shear connection has been studied for a long time. The first 
theory of this type of composite beams was developed by Newmark et 
al. [6]. The static analysis done by Newmark et al. [6] is based on the 
Euler-Bernoulli beam theory and become a basis of subsequent 
investigations of the layered beam with interlayer slip [7–10]. Above 
mentioned papers deal with straight layered beam. In [2] a two-layer 
ring with interlayer slip under the action of static load is analysed. In 
this paper we consider two-layered curved composite beam with 
imperfect shear connection whose deformation is in plane 
deformation. Our aim is to give the complete strength of materials 
solution of the equilibrium problem for curved composite beam with 
flexible shear connection shown in Figure 1. Both ends of curved 
composite beam are radially guided and the curvature is uniform. The 
formulation of the problem will be given in cylindrical coordinate 
system .Or zϕ  The plane 0z =  is the plane of symmetry for the 
material, geometrical, loading and supporting conditions. Let 

( ) ( ){ } ( ), , , , 0 2 , 1,2i iB r z r z A iϕ ϕ α= ∈ ≤ ≤ =       (1) 

be, where iA  is the cross section of beam component iB  whose 
elastic material has Young modulus ( 1, 2)iE i =  according to 

Figure 1. The connection of beam component 1B  and 2B  at their 

common cylindrical boundary 12B∂ , which is given by next equations 

 , 0 2 , ,
2
tr c zϕ α= ≤ ≤ ≤                                  (2) 

in radial direction is perfect, but in circumferential direction may be 
jump in the displacement field. This possible jump is called the 

interlayer slip. The applied radial load is f as shown in Figure 1. It is 
assumed that each curved layer separately follows the Euler-Bernoulli 
hypothesis and the load-slip relation for the flexible shear connection 
is linear. The paper presents solutions for radial displacement, slip, 
cross-sectional rotations and internal forces. 

 
Figure 1. Curved composite beam 

GOVERNING EQUATIONS 
Denote the unit vectors of cylindrical coordinate system Or zϕ ,re

ϕe  and .ze  The next displacement field will be used to describe the 
in-plane deformations of curved composite beam [2-4] 
 ( ), , 0,r zu v w u U wϕ ϕ= + + = =u e e e               (3) 

 ( ) ( )

( ) ( )

d, , ,
d

, , , 1, 2 .

i

i

Uv r z r

r z B i

ϕ φ ϕ
ϕ

ϕ

= +

∈ =

                                       (4) 

Application of the strain displacement relationships of the linearized 
theory of elasticity gives [1] 
 0,r z r z rzϕ ϕε ε γ γ γ= = = = =                          (5) 
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The strains given by Eqs. (5), (6) satisfy the requirements of the Euler-
Bernoulli beam theory, only ϕε  is different from zero and all the 
shearing strains vanish. From the definition of interlayer slip s  it 
follows that (Figure 1) 
 ( ) ( ) ( )1 2 .s cϕ φ ϕ φ ϕ = −                                    (7) 

A detailed analysis gives the next expression for the interlayer shear 
force [2] 
 ( ) ( ) ( )2

1 2 ,T kc tϕ φ ϕ φ φ = −                                  (8) 

where k  is the slip modulus, t  is the thickness of cross section and 
the common cylindrical boundary of 1B  and 2B is given by r c=  
and / 2.z t≤  Application of the Hooke’s law gives for normal stress 

ϕσ  
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The internal forces are defined as 
 ( ) 1 2d , 1, 2 , ,

i

i
A

N A i N N Nϕσ= = = +∫                  (10) 

 ( ) 1 2d , 1, 2 , .
i

i
A

M r A i M M Mϕσ= = = +∫               (11) 

The connection between the shear force S  and normal force N  is as 
follows [3, 4] 

 ( ) d .
d
NS ϕ
ϕ

= −                                                (12) 

Combination of Eq. (9) with Eqs. (10), (11) yields 
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From Eqs. (10-14) it follows that 
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Here, we introduce ,A 0 ,E R  which are defined as 
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The next equations of equilibrium will be used [2, 3] 
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In Eq. (23) 
3.K ktc=                                            (24) 

We note, the unit of k  is force/(length)3 and the unit of K  is 
(force)(length). Detailed forms of Eqs. (21-23) are as follows 
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In the present problem the boundary conditions can be formulated as 
 

1
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d(0) 0, (0) 0, 0,
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SOLUTION BY FOURIER SERIES EXPANSION 
We will use the next representation by Fourier series of applied radial 
load which is given by as (Figure 1) 
 ( ) ( ) ( ) ,rf f H Hϕ ϕ α β ϕ α β = − − + − − − 

         (30) 
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where constantf =  is the applied radial load, H  is the Heaviside 
function and 
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We look for the solution of considered equilibrium problem for 
( ) ,U U ϕ= ( ) ,i iφ φ ϕ= ( )1,2i =  as 
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 ( ) ( )
1

sin , 1, 2 .i ij
j

j iπφ ϕ φ ϕ
α

∞

=

= =∑                           (34) 

These functions satisfy all boundary conditions formulated by Eqs. 
(28), (29). Substitution Eqs. (31), (33), (34) into Eqs. (21-23) leads to 
the next system of equations 
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 ( )33 , 1, 2,... .ja K j= =                                          (45) 
From the solution of system of linear equation (36) we obtain the 
expressions of deflection ( ) ,U ϕ  and cross-sectional rotations 

( )1 ,φ ϕ ( )2 .φ ϕ  Applications of formulae (10-14) give the expressions 
of internal forces and couples. 
EXAMPLES 
Example 1  

The next data are used in Example 1: ,
4
πα = ,

16
πβ = [ ]1 N ,f =

[ ]0.04 m ,a = [ ]0.02 m ,b = [ ]0.03 m ,c = [ ]12
1 10 Pa ,E =

[ ]3
2 8 10 Pa ,E = × 10 380 10 N / m .k  = ×   Figure 2 shows the 

deflection and the graph of slip function is shown in Figure 3. 

 
Figure 2. Plot of the deflection function 

 
Figure 3. Plot of slip function 

The graphs of internal forces ,N S  and bending moment M  are 
presented in Figures 4, 5, 6. 

 
Figure 4. Plot of the normal force function 

 
Figure 5. Plot of the shear force function 

Example 2 
In Example 2 the same data are used as in Example 1 except β , 

which is here 
4
πβ =  (Figure 7). In this case we have 

[ ]10

0

1.041279 10 m / N ,U R
f AE

−= − = − × 1 2 0,φ φ= = ,N f=

0,S = [ ]0.033737 m .M R
f
= = −  

 
Figure 6. Plot of bending moment 

 
Figure 7. The case of β α=  

Example 3 
Example 3 deals with the case of concentrated load applied at 
ϕ α=  as shown in Figure 8. From equations of the third Section 
(Solution by Fourier series expansion) we obtain formulae concerned 
to the case of concentrated load by next limit calculation 0β →  and 
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f →∞  such that 2F fβ=  is a given finite value. The results of 
computations are shown in Figures 9-13. In Figures 9 and 10 the 
deflection function and the slip function are shown, the internal forces 
N  and S  are shown in Figures 11 and 12 and the graph of bending 

moment is presented in Figure 13. 

 
Figure 8. The case ofconcentrated load ( )0, fβ → →∞  

 
Figure 9. The plot of U  for 0, fβ → →∞  

 
Figure 10. The plot of s  for 0, fβ → →∞  

 
Figure 11. The plot of N  for 0, fβ → →∞  

 
Figure 12. The plot of S  for 0, fβ → →∞  

 
Figure 13. The plot of M  for 0, fβ → →∞  

CONCLUSIONS 
Paper presents the solution of a static problem of a two-layered 
composite curved beam with flexible shear connection for radial 
displacement, slip, normal force, shear force and bending moment. 
The applied load acts in radial direction and the end cross sections of 
curved beam are radially guided. The presented analytical, solution 
can be used as benchmark solution to check the validity of the 
different numerical methods, such as finite differences and finite 
element method. 
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