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Abstract:  The compaction of agricultural soil is a phenomenon of degradation, occuring from natural or artificial causes and is defined by the increase in 
soil density and the decrease in soil porosity, with negative consequences for the environment and for agriculture. Artificial soil compaction is generated 
by the contact between soil and tires or tracks of tractors and agricultural machinery. This paper presents some general mechanical concepts regarding 
the behavior of soil under compressive stresses and a review of some mathematical models which can be applied to describe the behavior of soil at 
compaction, under the influence of various parameters. 
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INTRODUCTION 
The phenomenon of soil compaction can be assimilated with the 
compressive strain and can be represented by a criterion of soil flow. A 
first compressive behavior of soil occurs when the compressive forces 
applied to the soil produce a certain degree of compaction, which, 
however, disappears after the removal of forces. In other terms, the 
volume decreases as stress increases, and viceversa. From an 
mathematical point of view, input and output variables are uniquely 
correlated to the entire field of values. Another behavior occurs when, 
after termination of the action of compressive forces, the soil does not 
return to its original state. In this case, input and output variables are 
uniquely correlated only to a certain set of values. The soil has both 
plastic (the most common situation) and elastic behavior. In order to 
develop and interpret equations that describe the behavior of soil to 
compaction, the circumstances in which the phenomenon occurs must 
be known [5].  

 
Figure 1. Action of a system of  forces on an elastic body [3, 5] 

 
A cubic element of volume, having the sides equal to the unit, is isolated 
from a linear-elastic, homogeneous and isotropic body upon which is 
applied a spatial system of forces (figure no 1).  Stresses emerged on the 
sides of this element of volume can be decomposed after the directions of 
the three axes of the reference system (figure no 2). 

 
Figure 2. Stresses emerged on the  sides  of the element of volume [5] 

MATERIAL AND METHOD 
Stresses and strains in agricultural soil 
Since the time of Archimedes, the distribution os stresses in the soil is 
a subject of scientific and engineering interest, culminating with the 
concept proposed by Cauchy (Truesdell, 1961; Davis şi Selvadurai, 
1996), who assumed that the nature of reaction forces generated 
during the transmission of external loads appplied to the interior of a 
solid aren’t different from the tractive forces applied to the boundary 
of a loaded solid [14]. 
The understanding of strain processes of arable soil is still limited. One 
reason for this fact could be that most research studies related to soil 
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compaction focused on the agronomic impact of compaction (and, 
more recently, on the environmental impact of compaction), at the 
expense of the strain process itself. External mechanical stresses 
applied to the soil (by the agricultural machinery) are related to the 
physical functions of soil or to crops reaction. To understand the impact 
of compaction on soil functions (reaction) is necessary to know the 
process of soil strain (cause). Strain is the response of soil to a 
mechanical or hydraulic stress applied on it. Soil stresses and strains are 
coupled phenomena: soil strain depends on soil stress and soil 
resistance, and the distribution of stresses in the soil depends on soil 
resistance and soil strain [14].  
Stress tensor for the soil  
Stress state of a cubic and infinitely small soil element can be descrbed 
by the normal stress σi  - perpendicular to the side of the element of 
volume and by shear stresses τij – tangential to the sides of the element 
[5, 12].  
Stress state can be described by the matrix of stress tensor (Koolen & 
Kuipers, 1983) [12]. To describe the stress state in point A found in the 
interior of the element of volume on which is applied an external load, 
is chosen a system of axes x, y, z and is assumed an infinitesimal cube 
around point A, with the sides parallel to the axes of the coordinate 
system (figure no 3) [5]. 

 
Figure 3. Components of stress [5, 6, 12, 1 6 ]   

„Mohr’s stress diagram” allows the plotting of stresses σ and τ for 
given σ1 and σ3 and for an variable θ angle. The steps required for 
this method are: 

1. drawing a rectangular system of axes with coordinates σ-τ; 
2. positioning of stresses σ1 and σ3 on axis σ; 
3. drawing a circle through the diametrically-opposite points 

σ1 and σ3 with the centre on axis σ; 
4. drawing of A-B line from point σ3 which makes an angle θ to 

the horizontal; 
5. determining the coordinates of point B located on the circle, 

that represents the values of stresses σ  and τ. 
This method is useful to find the values of stresses σ and τ for any θ 
angle, if the values of main stresses σ1 and σ3 are known (figure no 
4). 
Stresses theory for infinitesimal cubes can be extended to bodies 
(volumes of soil). This extension is verified experimentally using 
devices that measure the geometric changes of the volume of soil 
subjected to loadings, considering the soil samples as finite bodies 

rather than infinitesimal cubes. Next are analyzed the cases of a finite 
cube, a finite cylinder and a finite sphere. 

 
Figure 4. Mohr’s stress diagram [5] 

 
Figure 5. Finite cube [5] 

Finite cube consists of small infinitesimal cubes, loaded with main 
stresses σ1, σ2 and σ3. The large cube will have the following stresses: 
on the upper and on the lower side  -  normal stress σ1, on the left and 
on the right side - normal stress σ3, and on the front side and rear side 
– normal stress σ2. So, if a cubic body is loaded by stresses σ1, σ2 and 
σ3, then the stress state of each point will be given ny the matrix: 
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having the axex parallel to the sides of the cube. 
Finite cylinder is composed of small cubes, respectively small prisms in 
the walls area. For small cubes is assumed that σ2 = σ3. For the upper 
and lower sides of the cylinder, the stress will be σ1 and for stresses 
near the wall can be used equations 16 in section or Mohr’s diagram, 
and it can be inferred that in figure no 6 the stress σ is equal to σ2 = 
σ3 and τ=0. If a cylinder is loaded with σ1 in the upper and lower 
sides, and with σm to the wall, then the stress in each point is given by 
the following matrix: 
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with σ1 acting along the simetry axis of the cylinder. 
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For a finite sphere, loaded with σh after all directions, it can be shown 
similarly that stress state in any point is given by the matrix: 
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Strain theory [5] 
Theory of strain state in a point, with limitation in the area of small 
strains. At each point of the body (volume) of soil loaded there is a 
stress state and a strain state. Strains can be described comparably to 
that for the description of stress. Stress state has been described by 
normal and shear stress, and similarly the components of strain are: 
normal strain and shear strain. 
Normal strain can be defined considering an infinitesimal line segment, 
with length L before the strain, respectively lenght L+∆L after strain, 
thus: 

   L
L∆ε =                      (4) 

Shear strain is defined based on an angle which is straight before strain 
occurs for an infiniesimal volume of soil and for which, after strain, is 
rotated clockwise with an small α angle, while the horizontal side is 
rotated counterclockwise with an small β angle, then the shear strain 
of the initial right angle is given by the following equation: 

                       
)(

2
1 βαγ +⋅=                                              (5) 

RESULTS 
Probabilistic and deterministic mathematical models to express 
the behavior of soil at compression  
Strategies and  recommendations to prevent soil compaction are often 
based on simulation models (models of soil compaction), that allow the 
calculus of stress distribution and soil failure in the profile of soil for a 
certain mechanical loading (made by agricultural machinery) and for 
certain soil conditions (e.g., soil moisture and bulk density) and which 
can be of real benefit to farmers, in planning and deciding on the 
specific conditions of traffic on agricultural soils [13, 24]. 
Bekker (1956) and Söhne (1951, 1953) used the concepts of 
mechanics developed by Boussinesq (1885), Terzaghi (1925, 1943) 
and Fröhlich (1934) to obtain stress-strain soil models of soil under 
the traffic of agricultural vehicles [13, 14, 18].  
Soil compaction models can be divided in three parts [8, 12, 13]: 
1) boundary conditions at soil surface, which refers to the contact 

area and the distribution of stress on soil surface; 
2) distribution of equivalent stress in the soil; 
3) soil behavior at stresses-strains. 
Among the three parts of soil compaction models there are various 
relationships, for example, the stress-strain behavior can influence the 
stresses on soil surface. First, must be defined the stresses at soil 
surface, then stress distribution is calculated, and soil strain is 
calculated by applying a stress-strain relationship to the calculated 
stress, or the state of compacted soil is estimated by comparing the 

calculated stress to the critical stress (for example, the precompression 
stress) [13]. It is neccessary to determine soil behavior in the field and 
then to correlate this behavior with in situ (in laboratory) behavior by 
mechanical tests, because [13]: 
≡ the duration of mechanical load in the field (for example, by 

agricultural tire) is much smaller compared to that of laboratory 
tests for the determination of soil mechanical properties; 

≡ in the fied, loads are dynamic (so, the direction of main stresses is 
not constant in time), while in laboratory the loads are static; 

≡ unlike filed loads, soil samples used in laboratory tests are often 
loaded under controlled conditions. 

Mechanical models simulate the processes taking place in a system, 
and empirical models define the relationship between input and 
output data, without defining the dynamic processes. The most 
common empirical model is the concept of soil resistance-soil stresses, 
in which soil resistance is considered similar to the preconsolidation 
pressure, and stress distribution in the soil can be estimated using a 
concentration factor [13].  
Numerical models for soil compaction were proposed by Bailey et. al. 
(1986), Gupta and Larson (1982), Larson et. al. (1986), et. al. (1977a, 
1977b), Smith (1985), Gupta and Allmaras (1987). Smith’s model 
(1985) is based on the prediction of specific soil volume change due to 
changes in spherical stress produced by wheel load and contact area 
between tire and soil. Soil depth is divided into elements of layers, 
then is estimated the increase in spherical stress in the center of each 
layer under the wheel. The model can be used to compare the 
influence of different types and arrangements of wheels on the 
compaction. Gupta and Larson (1982) developed a model for soil 
compaction based on compression equations and on Boussinesq’s 
equations modified by Söhne (1953), by introducing a concentration 
factor to describe different types and conditions of soil. Raghavan et 
(1977a; 1977b) developed an equation that describes the maximum 
change of loamy soil density after several passes of a tractor tire [10]. 
Mathematical models using bulk density to describe soil behavior 
at compression  
The process of soil compaction can be described mathematically by 
relationships between soil bulk density (𝜌𝜌) and the stress applied on 
the soil (𝜎𝜎).  
 Bailey’s multiplicative model with three parameters (1986) [1] 

                              𝑙𝑙𝑙𝑙(𝜌𝜌) = 𝑙𝑙𝑙𝑙(𝜌𝜌0) − (𝑎𝑎 + 𝑏𝑏 ∙
𝜎𝜎) ∙  (1 − 𝑒𝑒−𝑐𝑐∙𝜎𝜎)        (6) 

where: ρ – soil density; ρ0 – soil bulk density when the stress applied on the 
soil σ = 0; a, b, c – empirical parameters. 
Logarithmic models predict that soil bulk density increases as the 
stress applied on the soil increases [1].  
 Assouline’s model (1986) [1] 
Experimental observations based on Bailey’s model indicate that the 
soil can be compacted to a maximum bulk density which depends on 
its initial state. In this regard, Assouline proposed the following 
logarithmic model: 
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                                             𝑙𝑙𝑙𝑙(𝜎𝜎) = 𝜌𝜌0 + (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 −
𝜌𝜌0) ∙ (1 − 𝑒𝑒𝑒𝑒𝑒𝑒[−𝜉𝜉 ∙ 𝜎𝜎])  (7) 

where: ρmax and ξ – connection parameters. 
Improvements to Bailey’s model consist in the need of only two 
commection parameters, and the value of ρmax can be determined in 
laboratory conditions using compression tests [1]. 
 Fritton’s model (2001) [1]. 
Since the models proposed by Bailey and Assouline are not flexible 
enough to represent the variation of the shape of compression curves, 
from almost linear to S-shaped curves, expressed on logarithmic scale, 
Fritton proposed the following model: 

                                          𝜌𝜌 = 𝜌𝜌𝑚𝑚 − (𝜌𝜌𝑚𝑚 − 𝜌𝜌0) ∙
{1 + [𝛼𝛼 ∙ (𝜎𝜎 + 1)]𝑛𝑛}−𝑚𝑚  (8) 

where: ρm – particle density; ρ0 – initial bulk density; α, n, m – 
empirical parameters of connection. 
By definition, for 𝜎𝜎 = 0 is required that 𝜌𝜌 = 𝜌𝜌0. Thus, Fritton’s 
model becomes: 

                                  𝜌𝜌 = 𝜌𝜌𝑚𝑚 − (𝜌𝜌𝑚𝑚 − 𝜌𝜌0) ∙
[1 + 𝛼𝛼𝑛𝑛]−𝑚𝑚  (9) 

This model assumes that soil can be compacted until particle density, 
ρm, but this assumption is physically unrealistic and incompatible with 
the experimental observations of Amir et. al. (1976) and Faure (1981). 
 Gupta and Larson’s model (1982) [12] 
Change of soil volume is described by a mathematical relationship 
between soil bulk density and the logarithm of maximum main stress: 

                         𝜌𝜌 = [𝜌𝜌𝑘𝑘 + ∆𝑇𝑇 ∙ (𝑆𝑆𝑙𝑙 − 𝑆𝑆𝑘𝑘)] +
𝐶𝐶 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 �𝜎𝜎𝑎𝑎

𝜎𝜎𝑘𝑘
� (10) 

where: ρ – final density corresponding to the applied stress σa; ρk – 
reference bulk density corresponding to reference stress σk on the virgin 
compression line (VCL); ΔT – slope of variation curve of bulk density 
depending on water saturation degree at σk; Sl – desired saturation 
degree at σk; Sk – saturation degree at ρk and σk ; C – compression index 
(slope of VCL). 
 Bailey and Johnson’s model (1989) [12] 
This model describes the state of cylindrical stress in the soil:  

                           𝑙𝑙𝑙𝑙𝜌𝜌 = 𝑙𝑙𝑙𝑙𝜌𝜌0 − �(𝐴𝐴 + 𝐵𝐵 ∙

𝜎𝜎𝑜𝑜𝑐𝑐𝑜𝑜) ∙ (1 − 𝑒𝑒−𝐶𝐶∙𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜) + 𝐷𝐷 ∙ �𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜
𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜

�� 
(11) 

where: ρ0 – initial bulk density; σoct – octaedrical normal stress; τoct – 
octaedrical shear stress; A, B, C, D – compactity coefficients (for 𝐷𝐷 =
0, this model is reduced to Bailey’s model, 1986). 
 Model to estimate soil density after tire passage, depending on the 

contact pressure [21] 
Schwanghart studied the effects of agricultural vehicle tires on soil 
compaction, the pressure in these tires being generally lower than that 
of transport tires. 

                        𝑒𝑒 = 45 + 0,32 ∙ 𝑒𝑒𝑖𝑖  (12) 

where: p - contact pressure (kPa); pi – tire inflation pressure (kPa). 

Soil density after the passage of tire is given by the following 
relationship: 

         𝐵𝐵𝐷𝐷 = 3,275
1,86+ 0,36

0,01∙𝑝𝑝+0,277
∙ 1000                         (13) 

where: p – contact pressure (kPa); BD – soil bulk density (kg/m3).  
Based on these two models was obtained the variation presented in 
figure no 6, from which it can be noticed that the variation of tire 
inflation pressure has low effects on soil compaction.  

 
Figure 6. Influence of tire inflation pressure on soil bulk density [21] 

 Model for the calculus of soil compactity [19] 
Soil compactity is expressed as the ratio between the density of solid 
parts of soil ρs and total density of soil (voids and solid), ρb: 

                    𝑣𝑣 = 𝜌𝜌𝑠𝑠
𝜌𝜌𝑏𝑏

 (14) 

where: v – soil compactity; ρs – density of solid parts of soil; ρb – total 
density of soil. 
Soil compactity is expressed as the maximum specific volume of soil at 
a certain given value of mean normal stress. The equation used for 
practical purposes is [12, 17, 19]: 

                                𝑣𝑣 = 𝑁𝑁 − 𝜆𝜆𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙𝑒𝑒   (15) 

where: λn – compression index;  N – specific volume of soil if pressure  
p = 1 kPa. 
 Model for soil sinkage after repeated passes of a tractor (Abebe, 

1998) [20]: 

                         𝑧𝑧𝑛𝑛 = 𝑧𝑧1 ∙ 𝑙𝑙
1
𝑎𝑎  (16) 

where: zn – soil sinkage after n passes (m); z1 – soil sinkage after the 
first passage (m); n – number of passes; a – multipass coefficient. 
Models for the calculus of the contact area  
 COMPSOIL model for contact area [8] 
O’Sullivan et. al. (1999) estimated soil bulk density on the longitudinal 
centerline of the wheel, starting with the tire’s ruts on the soil. Contact 
area was calculated with the following relationship: 

                              
 

i
321 p

L
sLsdbsA ⋅+⋅+⋅⋅=          (17) 

where: A – contact area (m2); L – wheel load (kN); b – width of 
transversal tire section (m); d – overall tire diameter (m); pi – tire 
inflation pressure (kPa); s1, s2, s3 – empirical parameters depending 
on soil surface. 
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Table  1. Values of empirical parameters s1, s2, s3 (O’Sullivan et.al.) [19] 
Parameter Rigid surface Deformable surface 

s1 0,041 0,31 
s2 0 0,00263 
s3 0,613 0,239 

 Komandi’s emprical model for contact area [7, 1 5 , 22] 

                        
45.0

i
7.0

sol p
D
b

FcA −⋅⋅⋅=     (mm2) (18) 

where: c - constant (c = 0,3 - 0,32 for rather bearing soils; c = 0,36 - 
0,38 for sandy soils; c = 0,42 - 0,44 for loose soil); F – wheel load (N); b 
– tire width (mm); D – tire diameter (mm); pi – tire inflation pressure 
(MPa). 
 FRIDA model for footprint area [25]  
Is used to describe the footprint between soil and tire by an superellipse 
and the distribution of stress by an exponential function (perpendicular 
on the driving direction) or a power function (along the driving 
direction). The contour of footprint, in top view, can be modeled by a 
superellipse (Hallonborg, 1996; Febo ş.a., 2000; Keller, 2005) which, in 
orthogonal system with the center in the origin, has the following 
shape: 

    �
𝑒𝑒
𝑎𝑎
�
𝑛𝑛

+ �
𝑦𝑦
𝑏𝑏
�
𝑛𝑛

= 1 (19) 

where: a and b – half of small and large axes [m]; n – rectangularity. 
Boundary and interior of the superellipse are given by: 

Ω = {(𝑒𝑒,𝑦𝑦)||𝑒𝑒/𝑎𝑎|𝑛𝑛 + |𝑦𝑦/𝑏𝑏|𝑛𝑛 ≤ 1} (20) 

Empirical models for footprint area (Grecenko, 1995) [22] 
                                     𝐴𝐴 = 1,57 ∙ (𝑑𝑑 − 2 ∙ 𝑟𝑟𝑙𝑙) ∙

√𝑑𝑑 ∙ 𝑏𝑏 
 (21) 

                   𝐴𝐴 = 𝜋𝜋 ∙ 𝛿𝛿 ∙ √𝑑𝑑 ∙ 𝑏𝑏 (22) 

            𝐴𝐴 = 𝑐𝑐 ∙ 𝑑𝑑 ∙ 𝑏𝑏 (23) 

where: A – contact area (m2); rl – radius of unloaded tire (m); b – tire 
width (m); d – tire diameter (m); δ – soil deformation (m); c – constant 
(c = 0,175 for rigid tire on rigid soil; c = 0,245 for flexible tire with 20% 
deformation on soft soil; c = 0,270 for rigid tire on soft soil). 
Söhne’s model for stress distribution at soil-tire interface [9] 
Söhne proposed equations describing three types of vertical stress 
distribution (uniform, square, parabollic), for three types of soil 
(resistant, relatively resistant and soft), if the contact area has circular 
shape. 

                      𝜎𝜎𝑣𝑣 = 𝜎𝜎0   (24) 

                                           𝜎𝜎𝑣𝑣 = 1,5 ∙ 𝜎𝜎0 ∙ �1 − 𝜌𝜌2

𝜌𝜌02
�  (25) 

                                          𝜎𝜎𝑣𝑣 = 2 ∙ 𝜎𝜎0 ∙ �1 − 𝜌𝜌2

𝜌𝜌02
�  (26) 

where: σ0 – mean stress applied in the contact area; ρ – distance from 
the center of contact area to an considered point;  ρ0 – radius of 
circular contact area. 

 
Figure 7. Stress on an elementary soil volume (Söhne) [9] 

Johnson and Burt’s model for the estimation of stress in the footprint 
(1990) [2, 11] 
Radial normal stress (maximum main stress) in any point of an elastic 
environment, due to a load applied in a point concentrated on a 
surface is given by Fröhlich’s equation: 

                    𝜎𝜎𝑟𝑟 =
𝑣𝑣 ∙ 𝑃𝑃 ∙ 𝑐𝑐𝑙𝑙𝑐𝑐𝑣𝑣−2𝜙𝜙

2 ∙ 𝜋𝜋 ∙ 𝑅𝑅2
 

                
(27) 

where: v – Fröhlich’s concentration factor (𝑣𝑣 ≥ 3); P – normal 
loaded point; R – radial distance between the concentrated load and 
the considered point; Ф – the angle between the normal load vector 
and the position vector from the concentrated load to the considered 
point (figure no 8). 

 
Figure 8. Geometrical relations for stress in a point of soil [11] 

The concentration factor (v) can be: 3 – for very hard soil, the ideal 
case, 4 – for hard soil, 5 – for stable soil, 6 – for soft soil [19]. 
The equation proposed by Cerruti estimates the normal stress in a 
radial point of a semi-elastic medium, due to a single shear stress on 
the surface, taking into account the increase of the modulus of 
elasticity with increasing depth: 

                      𝜎𝜎𝑟𝑟 = 𝑣𝑣∙𝐻𝐻∙𝑠𝑠𝑖𝑖𝑛𝑛𝑣𝑣−2𝜙𝜙∙cos𝜃𝜃
2∙𝜋𝜋∙𝑅𝑅2

 (28) 
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where: Hi – loaded shear point; θ – the angle between the vector of 
shear stress and the vertical plane in which is found the position vector 
from the shear stress to the considered point. 
Johnson and Burt (1990) estimated the normal radial stress in an elastic 
half-space, due to a single concentrated shear load, using Fröhlich’s 
equation. The stress for each concentrated stress applied on soil surface 
is given by the equation: 

                                   𝜎𝜎𝑟𝑟𝑖𝑖

=
𝑣𝑣 ∙ (𝑃𝑃𝑖𝑖 ∙ cosv−2 Φ𝑖𝑖 + 𝐻𝐻𝑖𝑖 ∙ sinv−2 Φ𝑖𝑖 ∙ cos𝜃𝜃𝑖𝑖)

2 ∙ 𝜋𝜋 ∙ 𝑅𝑅𝑖𝑖2
 

               
(29) 

Keller’s model for stress distribution in the soil (2004) [12]  
The distribution of stress σ1 under the action of a concentred vertical 
load P on a semi-infinite, homogeneous, isotropic and ideal elastic 
medium is given by: 

θ⋅
⋅π⋅
⋅

=σ 3
21 cos

r2
P3  (30) 

where: r – radial distance from the application point of load to a certain 
point; θ – angle between the normal direction of load vector and the 
direction of the position vector of the desired point towards the load 
application point (figure no 9). 

 
Figure 9. Soil stresses at the application of a vertical load (left) and soil 

behavior   depending on agricultural conditions (right) [12, 1 6 ] 
Model for stress distribution under the agricultural tire [12]  
It is considered that the shape of stress distribution in the forward 
direction and perpendicular to this direction is variable, the 
parameters used to generate the contact area and stress distribution 
being directly calculated based on the available parameters of the 
tire. For the law of stress variation in a direction perpendicular to the 
advance direction of the vehicle it can be used a Decay function, [12]: 
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where: C and δ – empirical parameters depending on the tire; w(x) – 
contact width. 
The value of δ increases from 1,4 to 9 if tire width decreases from 1,15 
m to 0,28 m. Depending on the value of δ, the maximum position of 
stress moves from the center of tire to its outline (from parabollic 
distribution to U-shapedd distribution) [9].  
Stress distribution on the forwarding direction is given by: 
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(32) 

where: yx ,0=σ  – stress under the center of the wheel;  l(y) – contact 
lenght; α  – parameter. 
Parameters in equations 31 and 32 are calculated knowing the values 
of wheel load, tire inflation pressure, the reccomended tire inflation 
pressure at a certain wheel load, tire width and the overall diameter of 
the unloaded tire. This model offers significantly useful input data for 
soil compaction models (figure no 10), increasing the accuracy of stress 
estimation and the precision of estimation of soil compaction due to the 
traffic of agricultural vehicles.  

 
Figure 10. Measured stress (left), uniform stress distribution (center)  

and stress distribution obtained by modeling (right), under 1050/50 R32 
tire, for tire inflation pressure of 100 kPa and wheel load of 86 kN  

on a wet clay soil [4, 12]   
Karafiath and Nowatsky’s model for the calculus of contact 
pressure between tire and rigid surface (1978) [22]: 

                                   𝑒𝑒 = 𝑐𝑐𝑖𝑖 ∙ 𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑐𝑐  (33) 
where: p – tire contact pressure (kPa); ci – constant of tire stifness 
(for high pressures ci = 0,6 and for low pressures ci = 1); pi – tire 
inflation pressure (kPa); pc – contact pressure of the non-inflated tire, 
when pi = 0 kPa. 
Koolen’s model for the calculus of pressure in the footprint (1992) 
[22]: 
Koolen studied the stresses in the soil, produced by wheels of 
agricultural vehicles, and found that stress in the contact area 
(contact pressure) is twice larger than tire inflation pressure:    

                          𝑒𝑒 = 2 ∙ 𝑒𝑒𝑖𝑖  (34) 
Helenelund’s model for stress distribution in the soil (1974) [23]: 
Stress distribution under a circular plate (figure no 11) is given by the 
following equation: 

 𝜎𝜎𝑧𝑧 = 𝑒𝑒 ∙ (1 − 𝑐𝑐𝑙𝑙𝑐𝑐𝛼𝛼𝛽𝛽)  (35) 
where: σz – vertical stress in the soil at depth z (kPa); z – soil depth 
(m); α – concentration factor; β – angle depending on plate’s radius 
at depth z. 
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Figure 11. Vertical stress under a circular plate [23] 

CONCLUSIONS  
The soil doesn’t have a heterogeneous structure, for which reason the 
modeling of artificial compaction is not easy to determine, in this 
regard being developed numerous models that considered various 
factors influencing this process: 
≡ soil bulk density and three empirical parameters (Bailey’s 

model); 
≡ soil bulk density, three empirical parameters and two connection 

parameters (Assouline’s model); 
≡ change of soil volume (Gupta and Larson’s model); 
≡ state of cylindrical stress in the soil (Bailey and Johnson’s model); 
≡ estimation of soil density after tire passage depending on contact 

pressure (Schwanghart’s model); 
≡ calculus of soil compaction state; 
≡ estimation of soil sinkage after multiple passes of a tractor 

(Abebe’s model); 
≡ estimation of soil bulk density on the longitudinal central axis of 

the wheel, from the ruts formed on the soil (COMPSOIL and 
O’Sullivan models); 

≡ determination of the contact area between agricultural tires and 
soil (Komandi’s empirical model); 

≡ estimation of footprint (FRIDA model); 
≡ determination of footprint area (Grecenko’s empirical models); 
≡ estimation of stress distribution at soil-tire interface (Söhne’s 

model); 
≡ estimation of stresses in the footprint (Johnson and Burt’s 

model); 
≡ distribution of stress in the soil (Keller’s model); 
≡ estimation of stress distribution under the agricultural tire 

(Keller’s model); 
≡ calculus of contact pressure between tire and rigid surface 

(Karafiath and Nowatsky’s model); 
≡ calculus of pressure in the footprint (Koolen’s model); 
≡ estimation of stress distribution in the soil (Helenelund’s model). 
Each of these models verify experimental data for the considered 
parameters, but each individual model cannot be extrapolated for any 
type of soil artificially compacted, because soil composition, the 
parameters influencing the compaction process and the atmospheric 
conditions vary from one plot to another.  
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