ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering Tome IX [2016], Fascicule 2 [April – June] ISSN: 2067 – 3809

^{1.} Mladen TOMIĆ, ^{2.} Predrag ŽIVKOVIĆ, ^{3.} Mića VUKIĆ, ⁴. Mirko DOBRNJAC, ⁵. Dragana DIMITRIJEVIĆ

A NUMERICAL STUDY OF PERFORATED PLATE LOCAL HEAT TRANSFER COEFFICIENT

^{1.} College of Applied Technical Sciences in Niš, Niš, SERBIA

2-3, 5. University of Niš, Niš, SERBIA

⁴ University of Banja Luka, Banja Luka, BOSNIA & HERZEGOVINA

Abstract: The need for compact heat exchangers has led to the development of many types of surfaces that enhance the rate of heat transfer, among them and perforated plate heat exchangers. The perforated plate heat exchangers consist of a series of perforated plates, that are separated by a series of spacers. The present study investigates the local heat transfer characteristics of flow through a perforated plate with 2 mm in diameter, hole length to diameter ratio of 1 and porosity of 25.6%. For the determination of the local heat transfer, numerical simulations were performed. Reynolds numbers based on the perforated plate pitch were in the range from 80 to 300. The results of average Nusselt number prediction were compared with the related experimental correlations. The experimental results agreed on qualitatively with the results obtained using a CFD. **Keywords:** local heat transfer, perforated plate, CFD

INTRODUCTION

the need to be very compact, i.e. they must temperature of the fluid entering the heat accommodate a large surface to volume ratio. This exchanger is suddenly changed. The heat transfer helps in controlling the heat exchanger exposure to coefficient can be determined from temperaturethe surroundings by reducing the exposed surface time history data. The periodic test techniques area. A small mass means also a smaller heat inertia. represents a variation of the transient method in This requirement is particularly important for small which the temperature of the fluid entering the refrigerators operating at liquid temperature.

The need of attaining high effectiveness and a high single perforated through which air is flowing is level of compactness together in one unit led to the investigated using a Computational Fluid Dynamics invention of matrix heat exchangers (MHE) by (CFD) method. The research was conducted in McMation et al. [1]. Matrix heat exchanger consists order to understand the thermal process at the of a package of perforated plates with a multitude of surface of the perforated plate. For the numerical flow passages aligned in the direction of flow experiment, a block of 2x2 holes with diameter of 2 allowing high heat transfer in a proper design unit. mm and 3.5 mm pitch between holes was modeled This exchanger can have up to $6000 \text{ m}^2/\text{m}^3$ surface (Figure 1). to volume ratio [2.3].

The convective heat transfer characteristics of any The mathematical model is based on following heat exchanger surface can be determined using governing equations: steady state, periodic test and transient test » continuity equation techniques [2]. For a steady-state method, the temperatures of hot and cold fluids entering and leaving the heat exchanger, as well as flow rates are

possible to determine heat flux, thus overall heat One of the most important properties of heat transfer coefficient. In the transient technique exchangers, apart of having a high effectiveness is method, after the steady state is achieved the helium heat exchanger is continuously varied.

In the present study, a local heat transfer over a

MATHEMATICAL MODEL

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = 0$$
 (1)

measured, and when steady state is achieved it is » momentum (Navier-Stokes) equations

FH

ACTA TEHNICA CORVINIENSIS – Bulletin of Engineering

Fascicule 2 [April – June] Tome IX [2016]

$$\frac{\partial(\rho u_{i})}{\partial t} + \frac{\partial(\rho u_{i} u_{j})}{\partial x_{j}} = \frac{\partial(\tau_{ij})}{\partial x_{j}} - \frac{\partial p}{\partial x_{i}} + f_{i}$$
(2)

» energy equation

$$\frac{\partial(\rho h)}{\partial t} + \frac{\partial(\rho u_i h)}{\partial x_i} = \frac{\partial(j_{ih})}{\partial x_i} + \mu \phi + S_h$$
(3)

where ρ is the density, u_i – the three main velocity components, p – the pressure, f_i are the body forces and any other additional momentum sources, h is the enthalpy, and S_h represents the generation/ destruction rate of enthalpy. The τ_{ij} is the momentum shear stress tensor and the j_{ih} – the diffusion flux of energy transport. In the energy equation, the diffusion flux of energy transport term j_{ih} includes the energy transfer due to conduction:

$$\mathbf{j}_{ih} = \Gamma_{\mathrm{T}} \frac{\partial \mathbf{I}}{\partial \mathbf{X}_{i}}.$$
 (4)

where the factors Γ_T are the diffusion coefficients for the enthalpy – thermal conductivity coefficient. The second term on the right hand side in eq. (3) represents the energy transport by diffusion of species and the Soret-effect species diffusion transport, respectively. Finally, the term Φ is the viscous dissipation defined as:

$$\phi = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)^2 - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \frac{\partial u_l}{\partial x_l}.$$
 (5)

Numerical research

Three-dimensional steady-state turbulent flow is studied using commercial software ANSYS Fluent 14. The Reynolds Averaged Navier–Stokes equations (RANS) together with an eddy viscosity turbulence model are solved. The Shear Stress Transport (SST) $k \sim \omega$ turbulence model is chosen for its advantage in resolving flow separation and generally better performance than the standard $k \sim \epsilon$ model [4,5]. In order to model the local flow structure, a representative unit with 4x4 holes is defined (Figure 1). A uniform velocity is set at the inlet and a pressure boundary at the constant outlet. Turbulence quantities at the inlet are determined from the empirical correlations for turbulence intensity for internal pipe flows [6]. Symmetry planes were set on the side boundaries perpendicular to the flow direction (Figure 1). Domain is created as a sufficiently long (>20d), especially on the downstream side, to ensure the simulation results.

The computational mesh (Figure 1) uses continuously refined resolution near the solid wall boundaries, so that y^+ is less than 5 in order standard wall functions could be applied. The air velocity and the temperature on the inlet, as well as the constant temperature boundary conditions on

the wall surface have been set according to the earlier experimental research conducted by Tomić et al. [7]. A typical convergence of the numerical research have been presented on the Figure 2.

Figure 1. A 3D model and its numerical grid with boundary conditions

The validation of the numerical experiment has been done by comparing with them with results of Tomić et al. [7]. On the Figs. 3-5 are presented comparison for the partial heat transfer coefficients, as well as overall heat transfer coefficient.

ACTA TEHNICA CORVINIENSIS Bulletin of Engineering

Fascicule 2 [April – June] Tome IX [2016]

Figure 3. Comparison of the numerical model and experimental results for the heat transfer coefficient for the upwind side of the perforated plate

Figure 4. Comparison of the numerical model and experimental results for the heat transfer coefficient for the downwind side of the perforated plate

Figure 5. Comparison of the numerical model and experimental results for the overall heat transfer coefficient

RESULTS AND DISCUSION

Figure 6 and 7 shows the heat fluxes for the upwind and downwind side of the perforated plate along with velocity profile for the air velocity of 0,33 and 1,24 m/s, or in pitch based Reynolds numbers 80 to 300. As it cold be seen from the figures on the upwind side the difference between local heat CONCLUSION transfer zones is the consequence of the flow The detailed gas flow and heat transfer through a separation and its acceleration

consequence of the jet flow and surrounding recirculation zones. Each recirculation zone is located between diagonally neighbouring holes (Figure 6 and 7). Between the recirculation zones are "dead zones" with low air velocity and thus low heat transfer.

Generally, the local differences in the heat transfer coefficients are upto 2 times and they are in the function of local air velocity. If the local heat transfer coefficient is assumed to be proportional to the local heat flux and according to the Nusselt criterial equation

$$\alpha_{x} \sim W_{x}^{n}$$
. (4)

Figure 6. Numerical results for the Reynolds number 80 air velocity of 0,33 m/s

Figure 7. Numerical results for the Reynolds number 300 - air velocity of 1,24 m/s

At the upwind side, the heat transfer coefficient is proportional to

$$\alpha_{x^{\sim}} W_{x}^{0,522}, \qquad (5)$$

and on the downwind side

$$\alpha_{x} - W_{x}^{0,520}$$
. (6)

It could be assumed that power in the eqs. 5 and 6 has the mean value of 0.521. The results in the eqs. 5 and 6 are in good agreement with results of Tomić et al. for the overall heat transfer coefficient [7]

$$Nu = 1.055 \text{Re}^{0.524}$$
. (7)

through single perforated plate is investigated using a perforations, while on the downwind side, it is the Computational Fluid Dynamics method in order to determine local heat transfer coeficients. The obtained results show good general trend and mutual agreement. The current work lays a foundation for the future research of the influence of geometric parameters and number of plates in a perforated plate heat exchanger on the local heat transfer.

ACKNOWLEDGEMENTS

The research presented in this paper is supported by the project III 42008 of the Ministry of Education, Science, and Technological Development of the Republic of Serbia and College of Applied Technical Sciences in Niš.

Note

This paper is based on the paper presented at The 12th International Conference on Accomplishments in Electrical and Mechanical Engineering and Information Technology – DEMI 2015, organized by the University of Banja Luka, Faculty of Mechanical Engineering and Faculty of Electrical Engineering, in Banja Luka, BOSNIA & HERZEGOVINA (29th – 30th of May, 2015), referred here as[8].

REFERENCES

- [1.] McMahon, H. O., Bowen R. J., Bleye Jr., G. A. (1950). A Perforated Plate Heat Exchanger. Trans ASME., vol. 72, p. 623~632.
- [2.] Krishnakumar, K., Venkataratham, G. (2003). Transient Testing of Perforated Plate Matrix Heat Exchangers. Cryogenics, vol. 43, no. 2, p. 101-109.
- [3.] Venkataratham, G., Sarangi, S. (1990). Matrix Heat Exchangers and their Application in Cryogenic System. Cryogenics, vol. 30, no. 11, p. 907-918.
- [4.] Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. vol. 32, p. 1598–1605.
- [5.] Guo, B. Y., Hou, Q. F., Yu, A. B., Li L. F., Guo J. (2013). Numerical Modelling of the Gas Flow Through Perforated Plates, Chemical Engineering Research and Design, vol. 91, no. 3, p. 403-408.
- [6.] Versteeg, H. K., Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education Limited, Harlow.
- [7.] Tomić M., Živković P., Vukić M., Ilić G., Ayed S. (2014). The Methodology for Determination of Perforated Plate Heat Transfer Coefficient. International Conference Powerplants 2014.
- [8.] Tomić M., Živković P., Vukić M., Dobrnjac, M., Dimitrijević, D., A numerical study of perforated plate local heat transfer coefficient, The 12th International Conference on Accomplishments in Electrical and Mechanical Engineering and Information Technology – DEMI 2015

|--|

copyright © University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara, 5, Revolutiei, 331128, Hunedoara, ROMANIA http://acta.fih.upt.ro