

© copyright Faculty of Engineering – Hunedoara, University POLITEHNICA Timisoara

ACTA TECHNICA CORVINIENSIS
– Bulletin of Engineering
Tome IX [2016] , Fascicule 2 [April – June]
ISSN: 2067 – 3809

1. Tanmoy SARKAR, 2. Niva DAS

WEB OF THINGS – PRAGMATIC APPROACH

1. Neudesic India Pvt. Limited, Hyderabad, INDIA
2. Kelton Tech Solutions Limited, Hyderabad, INDIA

Abstract: In recent years IoT (Internet of Things) is gaining interest among researchers and many IoT
development platforms, SDK’s have been proposed. There are lots of low powered, efficient devices available in
market which can be used to create IoT solutions. The main drawbacks of IoT is that every manufacture proposed
it owns protocol and provide their own API’s to work with it. You need to be an avid programmer to implement,
understand, customized and use this API’s. Since lots of these libraries are open source not much information can
be gathered online. To solve this protocol agnostic problem in IoT many researchers are now focusing on WoT
i.e. Web of Things. The main advantage of implementing WoT is that we can use familiar Web protocols to build
up our solutions. In this paper we will discuss SOA architecture, proposing a high level WoT network
implementation at home-using embedded devices and Web protocols like REST web services and JavaScript to
achieve interoperability. We will also discuss security concerns in WoT and best practices to avoid
vulnerabilities.
Keywords: WoT, Web of Things, IoT, Internet of Things, REST, SOA

INTRODUCTION
With the popularity of IoT more and more devices
manufactured by different vendors are coming to
market. Each device has their own specification and
protocols supported.
However, the central focus of IoT is to achieve
interconnectivity among these devices and how to
achieve interoperability while ensuring trust and
security [1] [9] [10] [11]. Also, different operating
system proposed in IoT for resource constraint
devices [2]. In [19] author proposes to use cognitive
radio with IoT and in [18] author discuss about
secure communication in cognitive radio. To
overcome this mismatch many researchers are
moving to WoT which is a subset of IoT but here to
communicate between devices they are using Web
protocols [3]. WoT, unlike IoT which works on all
layers of OSI, mainly works on OSI layer 1. Because
of this high level of abstraction, it is easier to
connect devices and send messages among them.
Also, with the growing maturity of cloud
computing, data can be easily stored, shared and
retrieved. To implement physical mashup
communication where physical devices
communicate with virtual platforms web
technologies like JavaScript, REST can be used.
JavaScript has been tested and tried from last 10
years and is mostly used nowadays in both client
side as well as server side scripting language in

Web. It can become WoT programming language in
near future with the increasing user base. Also,
REST is well defined protocol which works with
many different data format like XML, JSON and
used pre-defined verbs like GET, POST, PATCH, and
PUT. Using these well-defined protocols and
programming languages in our system we can
develop our solution without any worry of new
protocol implementation. JSON data is preferable
over XML data in WoT because unlike latter JSON
data are much faster to parse and doesn’t need strict
validation. Today nearly every device can consume
REST services and parse JSON data with ease. In [4]-
[8] authors have applied REST to smart devices
mainly considering interoperability, mash ability
and complexity.
SERVICE ORIENTED ARCHITECTURE
Service Oriented Architecture (SOA) is collection of
services which communicate with each other and
pass data among them. In SOA the basic
components are service and connection. A service is
independent, fully functional, well defined
function. To connect these services the most
common connection we used is web service.
The two most popular Web Services approaches
are:
WS-* Architecture: This is most commonly known
as SOAP (Simple Object Access Protocol) initially
builds by Microsoft which becomes standard by

 ACTA TEHNICA CORVINIENSIS Fascicule 2 [April – June]
 – Bulletin of Engineering Tome IX [2016]

| 116 |

W3C. SOAP implement various WS-* services. It
basically woks with XML file for data transmission,
WSDL for Service definition and UDDI for Service
discovery. Before parties can communicate with
SOAP they need to share the message structure,
protocol use among themselves. Any deviation from
accepted structure can result in message rejection in
SOAP. SOAP is a protocol which implements WS*-
Architecture.
a. REST architecture: REST (Representation State

Transfer) is not a protocol but rather define
some style on how to consume services using
standard HTTP protocol. REST doesn’t
dependent on any single communication
protocol but any protocol which supports URI
can use REST. Also, unlike SOAP no prior
knowledge of data is required. REST uses
HATEOAS (Hypermedia as the Engine of
Application State) constraint to achieve this
functionality. It’s a constraint in REST services
where client communicate with services based
on hypermedia provided dynamically by
application servers.

In WoT, REST is considering to be the first class
citizen to communicate data among devices over
HTTP because of following reasons:
1. No prior knowledge of data required beyond

media type which the resource can provide.
2. REST permits different data format but SOAP

only works with XML.
3. REST can be used with different communication

protocol.
4. REST supports JSON data which is lightweight

than XML and can be easily parsed.
5. REST can use HTTP protocol security mechanism

like SSL for secure communication.
6. SOAP messages are more secure than REST

because it can implement WS-Security which
offers confidentiality and integrity of data. But,
these securities overhead consume lot of
resources and many embedded devices are
resource constraint. So, in spite of REST is not as
secure as SOAP we can limit the security
vulnerabilities by following some best practices.

In [4], the author uses REST API’s which gets data
from Bluetooth enable embedded devices and
visualize data/functionality like power
consumption, power on/off on web-page.
SECURITY CONCERNS
Security is a major concern for any communication
nowadays. In paper [6], the author discuss about
different security and privacy issue in IoT. There are
ways to secure IoT communication [8] but again
will extra overhead on embedded devices. In WoT,
all the communications are REST API based. So,
attacker can attack the API’s and insert malicious
data with techniques like script injection, SQL

injection. The best way to avoid this is to follow
some REST best practices [17] and limit the attack
surface.
1. Since REST API are stateless authentication

should not depend on cookies or sessions. Each
request must come with authentication data like
API key. API key can either be incorporated into
URL or message header. The problem with API
key in URL is anybody can copy the key and
share it with others. So, it’s better to have API
key within header than URL.

2. The API key within header is still being
traceable because the credentials are travelling
through wire. So, it always better to signed
request. For this, it’s always better to use HTTPS
over HTTP.

3. Avoid forwarding failure request to less secure
API. Always better to send 404 errors in case of
authorization failure with proper message.

Some best practices of JavaScript:
1. Reduce the use of global variables.
2. Reduce the possibility of undesirable re-

declarations
3. Reduce the use of anonymous functions for

better debugging experience and
maintainability.

4. Avoid using Eval statement.
5. Always use HTTPS and avoid HTTP

communication.
But still after following these best practices there
are always room for well know network attacks like
man-in-the-middle attack, DoS attack. The most
useful technique to break secure communications
which are using HTTPS is SSLStrip. SSLStrip acts as
a proxy for HTTPS traffic and send the request as
HTTP. Since the HTTP traffics are not secure
attacker can use tcpdump to retrieve user
credentials. To overcome SSLStrip attack the best
way is to always host API using HTTPS and doesn’t
forward the request to HTTP in case of failure. In
this paper we are discussing setting up home WoT
network so chances of network attack are minimal.
TOPOLOGY USED
In this network topology Fig.1 we are using
Raspberry Pi as a central point of communications
which interacts with different devices to get data
and forward it to cloud storage. Here, Arduino is
used to sense room temperature/humidity with the
help of sensor DHT11 and post message (interval
can be set programmatically) to Raspberry pi by
consuming REST API exposed by Raspberry Pi with
the help of ESP8266 Wi-Fi module. End systems like
smartphone/Laptop are request initiating devices
which request data and get response from cloud
storage. The data flows as follows:
1. Arduino sends sensor data to raspberry pi

(within interval) to raspberry pi.

 ACTA TEHNICA CORVINIENSIS Fascicule 2 [April – June]
 – Bulletin of Engineering Tome IX [2016]

| 117 |

2. Raspberry pi in turn sends the data to cloud
storage.

3. Request initiating devices like smartphone/
laptop request room temperature/humidity by
consume API exposed by cloud service.

4. Once the cloud receives the request it sends the
latest data got from Raspberry pi.

5. Request initiating devices like smartphone,
laptop can then use these data for analytics
purpose.

Figure 1. Network topology diagram of WoT devices

ALGORITHM
To implement below algorithm we have used
JavaScript in Raspberry Pi and C language in
Arduino. Today JavaScript become the language of
Web and we can leverage its power in WoT. There
are client side JavaScript modules available like
angularjs [14] as well as server side JavaScript like
Nodejs [16]. For, cross platform mobile application
Ionic framework [15] is used which can be
programmed using angularjs, HTML5 and CSS3
[12]. There are lots of open source JavaScript
modules available which helps in fast development.
Arduino doesn’t have built in Wi-Fi module. But for
Wi-Fi communication Arduino Wi-Fi Shield is
available. In this experiment we are using ESP8266
cheap, efficient Wi-Fi module for communication
with Raspberry Pi.
Communication between Arduino and Raspberry Pi.
1. Initialize variables
2. Start initiating connection
3. We have introduced interval of 10 mins so that

Raspberry Pi should not be flooded with data.
4. While(ESP8266 is available){

a. Configure header with registered Device id.
The device registration should be done
beforehand and must be unique for audit
purpose

b. POST data to Raspberry Pi Rest API using
ESP8266 command.

}
5. While(wait for response){

Log full response for audit purpose;
 }

6. Close connection

While
ESP8266 is
available

Start

Initialize Software Serial,
ESP8266 module, port and

begin setup

Stop

Start software serial
and ESP8266 module

Configure and send POST
request message/data

Read ESP8266 data

Close ESP8266
connection

Check for
Active

interval?

Not active

Figure 2. Arduino workflow

Start

Initialize variables
and configure port

Set view engine and
jsonparser

Configure POST URL
and GET URL.

Start Server

Stop

Figure 3. Node js workflow
Communication between Raspberry Pi and Cloud
Service
1. Initialize variables and configure port
2. Start initiating connection
3. While(Listen for incoming messages)

{
a. Configure POST message using device name
b. Configure request header
c. Apply authorization key to header
d. Send data to cloud storage

 }
4. While(wait for response)

{
Log full response for audit purpose;

}

 ACTA TEHNICA CORVINIENSIS Fascicule 2 [April – June]
 – Bulletin of Engineering Tome IX [2016]

| 118 |

For complete code and configuration visit [13].
The communication between Arduino and
Raspberry Pi is not secure and doesn’t follow REST
best practices. We keep it simple with the
assumption that since devices are connected to LAN
rather than WAN, they are more secure from
outside attacks.
CONCLUSION
With the invent of WoT, more and more researchers
are moving towards it because of its simplicity,
interoperability and use of well-defined/tested web
technologies But with the increasing number of
devices security becomes more and more
vulnerable. The way we can limit WoT
vulnerabilities is by following Web technologies best
practices. Also, the rises of web languages like
JavaScript, HTML5 help WoT researchers and
enthusiasts’ jobs much easier. Now with vibrant
open community available WoT can be the future of
connected devices.
References
[1.] L. Atzori, A. Iera, and G. Morabito, “The Internet

of Things: A survey,” Comput. Network. vol. 54,
pp. 2787–2805, October 2010.

[2.] T. Borgohain, U. Kumar and S. Sanyal, “Survey of
Operating Systems for the IoT Environment” in
arXiv preprint arXiv: 1504.02517, 2015

[3.] D. Guinard and V. Trifa, “Towards the Web of
Things: Web Mashups for Embedded Devices,” in
Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web (MEM
2009), in proceedings of WWW (International
World Wide Web Conferences), Madrid, Spain,
Apr. 2009.

[4.] D. Guinard, C. Floerkemeier, and S. Sarma, “Cloud
computing, rest and mashups to simplify rfid
application development and deployment,” in
Proceedings of the 2nd International Workshop on
the Web of Things (WoT 2011). San Fransisco,
USA: ACM, June 2011.

[5.] D. Yazar and A. Dunkels, “Efficient application
integration in IP-based sensor networks,” in
Proceedings of the First ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency
in Buildings, ser. BuildSys ’09. New York, NY,

[6.] W. Drytkiewicz, I. Radusch, S. Arbanowski, and R.
Popescu-Zeletin, “pREST: a REST-based protocol
for pervasive systems,” in Mobile Ad-hoc and
Sensor Systems,

[7.] V. Stirbu, “Towards a RESTful Plug and Play
Experience in the Web of Things,” in IEEE
International Conference on Semantic Computing,
Aug. 2008, pp. 512–517.2004 IEEE International
Conference on. IEEE, 2004, pp.340–348.

[8.] E. Wilde, “Putting things to rest,” School of
Information, UC Berkeley. Report 2007-015.,
Tech. Rep., 2007. [Online]. Available:
http://escholarship.org/uc/item/1786t1dm

[9.] T Borgohain, A Borgohain, U Kumar and S Sanyal,
“Authentication Systems in Internet of Things”,
arXiv preprint arXiv: 1502.00870, 2015

[10.] T Borgohain, U Kumar and S Sanyal, “Survey of
Security and Privacy Issues of Internet of Things”,
arXiv preprint arXiv: 1501.02211, 2015

[11.] U Kumar, T Borgohain and S Sanyal,
“Comparative Analysis of Cryptography Library in
IoT”, arXiv preprint arXiv: 1504.04306, 2015

[12.] J. Kopeck, K. Gomadam, and T. Vitvar, “hRESTS:
an HTML microformat for describing RESTful web
services,” in Proc. of the IEEE/WIC/ACM
International Conference on Web Intelligence and
Intelligent Agent Technology. IEEE Computer
Society, 2008, pp. 619– 625.

[13.] https://iotguys.wordpress.com/
[14.] https://angularjs.org/
[15.] http://ionicframework.com/
[16.] https://nodejs.org/en/
[17.] http://www.programmableweb.com/news/how-

to-secure-your-rest-api-right-way/2014/05/22
[18.] S. Sanyal, R. Bhadauria, and C. Ghosh, “Secure

communication in cognitive radio networks,” in
Proc. Computers and Devices for Communication
(CODEC), 2009, pp. 1–4.

[19.] Q. Wu et al., “Cognitive Internet of Things: A new
paradigm beyond connection,” IEEE Internet
Things J., vol. 1, no. 2, pp. 129–143, Apr. 2014

copyright ©

University POLITEHNICA Timisoara,
Faculty of Engineering Hunedoara,

5, Revolutiei, 331128, Hunedoara, ROMANIA
http://acta.fih.upt.ro

https://scholar.google.co.in/scholar?oi=bibs&cluster=4645906782676455758&btnI=1&hl=en
https://scholar.google.co.in/scholar?oi=bibs&cluster=4645906782676455758&btnI=1&hl=en
http://escholarship.org/uc/item/1786t1dm
https://scholar.google.co.in/scholar?oi=bibs&cluster=13226484891562991540&btnI=1&hl=en
https://scholar.google.co.in/scholar?oi=bibs&cluster=3310239409430193960&btnI=1&hl=en
https://scholar.google.co.in/scholar?oi=bibs&cluster=3310239409430193960&btnI=1&hl=en
https://scholar.google.co.in/scholar?oi=bibs&cluster=13654088325708850647&btnI=1&hl=en
https://scholar.google.co.in/scholar?oi=bibs&cluster=13654088325708850647&btnI=1&hl=en
https://angularjs.org/
http://ionicframework.com/
https://nodejs.org/en/
http://www.programmableweb.com/news/how-to-secure-your-rest-api-right-way/2014/05/22
http://www.programmableweb.com/news/how-to-secure-your-rest-api-right-way/2014/05/22

