^{1.}Oluwaseun Adedapo ADETAYO, ^{2.}Olugbenga Oludolapo AMU, ³.Tochukwu Obumneme ONUORAH, ⁴.Elijah Abiodun ADETONA

MODIFICATION OF CEMENT STABILIZED STRUCTURAL LATERITIC WOOD ASH

^{1-3.} Department of Civil Engineering, Federal University, Oye-Ekiti, NIGERIA

⁴ Department of Civil Engineering, Obafemi Awolowo University, Ile-Ife, NIGERIA

Abstract: This paper investigates cement stabilized structural soil samples modified with wood ash as complement for cement in structural works and hence reduced the cost of construction. Soil samples were collected from three different excavated foundations labelled sample A, B, and C. Preliminary tests were performed on the samples at their natural states and when stabilized at optimum cement. Engineering tests were also performed on samples at their natural states, when stabilized with optimum cement and when wood ash powder (WAP) was introduced at 2, 4, and 6%. Results of the engineering tests showed that WAP increased the maximum dry density (MDD) of all the samples. At 2% WAP content, and with the optimum cement content kept at 10% for samples A and B and 8% for sample C, the MDD values increased from 1587.99 to 1588.23kg/m³, 1548.89 to 1604.08kg/m³ and 1506.45 to 1529.42kg/m³ in samples A, B and C respectively. The samples shear strengths also increased from its natural state, samples A, B and C increased from 100.26 to 112.66kN/m², 95.76 to 133.27kN/m² and 64.88 to 92.95kN/m² at 4% WAP contents respectively. It was therefore concluded that WAP is an effective additive on cement stabilized lateritic soil for foundation construction.

Keywords: wood ash powder, cement stabilization, lateritic soil, structural foundation

INTRODUCTION

modification or stabilization or both. Soil modification is the cement, asphalt and lime. addition of a modifier (cement, lime and others) to a soil to change — Lateritic Soils its index properties, while soil stabilization is the treatment of soil to Lateritic soils form a group comprising a wide variety of red, brown, improve its strength and durability, such that it becomes totally and yellow fine-grained residual soils of light texture as well as suitable for construction beyond its original classification.

stabilizing soils, though these materials have rapidly increased in by the presence of iron and aluminum oxides or hydroxides, (Neville, 2000).

manufactured soil improving additives (cement, lime and others) O'Flaherty (2002) referred the term lateritic soils as materials with have kept the cost of structural engineering projects very high. This lower concentrations of oxides. hitherto has continued to deter the developing, underdeveloped Laterization is the removal of silicon through hydrolysis and materials that can serve as a replacement for cement in soil can be effectively stabilized to improve their properties for foundation amount to a worthwhile effort.

prerequisites for standard structural foundation, the treatment of agent has been found successful for all lateritic materials. the natural soil to improve its engineering properties is known as Laboratory studies, or preferably field tests, must be performed to soil stabilization. Because of the sowing construction cost of determine which stabilizing agent, in what quantity that will cement stabilizers, waste product from wood known as wood ash perform adequately on a particular soil (Army Study Guide, 2008). is considered as a pozzolan. Wood ash is available everywhere on Some stabilizing agents that have been used successfully are earth especially in domestic places. Wood ash is a waste product cement, asphalt and lime. derived from burning of wood, discovered as a suitable pozzolan In analyzing the engineering properties of soil, three basic used for partial replacement of cement in stabilization of lateritic parameters that are of keen interest to Engineers are permeability, soil. According to Amu (2010), when the quality of the sub-grade shear strength and compressibility (Okunade, 2007). Permeability is material meets the requirements expected of a sub-base, then a the soil property that permits the passage of fluid by a flow process sub-base is not necessary. But in cases where suitable sub-base under the action of eternally applied forces (Okunade, 2007). For materials are not readily available, the in-situ material can be the material to be permeable, the void spaces within it must be

treated to meet the required engineering properties. The materials Structural soil foundation improvement could either be by can be stabilized using any of these stabilizing agents like Portland

III)

nodular gravels and cemented soils (O'Flaherty, 2002). They may Over time, cement and lime are the two main materials used for vary from a loose material to a massive rock. They are characterized price due to a sharp increase in the cost of energy since 1970s particularly those of iron, which give the colours to the soils. For engineering purposes, the term laterite is confined to the coarse-The over dependence on the utilization of industrially grained vermicular concrete material, including massive laterite.

and poor nations of the world from providing relatively standard oxidation that results in the formation of laterites and lateritic soils structures to dwellers that constitute the higher percentage of their (Okunade, 2007). The degree of laterization is estimated by the population (Alhassan and Mustapha, 2007). The quest to discover silica-sesquioxide (S-S) ratio [SiO2 / (Fe2O3 + Al2O3)]. Lateritic soils particular uses. However, because of the wide range of silica-Adequate strength and engineering properties of soil material are sesquioxidein the lateritic soil characteristics, no one stabilizing

would affect the behaviour of the soil especially due to seasonal important in local restaurant, bakeries, local breweries, pottery, variations. In places where frost action is critical, permeability of the blacksmith and burnt brick factories. Institutions such as hospitals, soil is a very critical factor to consider in pavement design. The shear prisons and schools also demand fuel wood for cooking. The per strength of a soil is defined as the maximum or limiting value of capita consumption of fuel wood in rural area is 393.43 kg/annum shear stress that may be induced within its mass before the soil while the urban households consume 255.75 kg/ annum. yields (Whitlow, 1995). The order of shear resistance within the soil — Pozzolan mass must be accurately understood before the computation of Pozzolan can be defined as a siliceous and aluminous material, slope stability and lateral pressure on earth retaining structure can which in itself possesses little or no cementation value but will in a be successfully carried out. The purpose of shear strength testing is finely divided form, such as a powder or liquid and in the presence to establish empirical values for the shear strength parameters.

mass that results in a change in the volume of mass. Such changes possessing cementitious properties. Pozzolan is a fine powdered in volume have important influence on the engineering properties material which is added to non-hydraulic lime mortars to accelerate of the soil. The compressibility of a soil is determined experimentally the set. The material possesses little or no cementitious value, but by the triaxial compression, unconfined compression.

— Soil-Cement Stabilization

soil to improve certain properties of the soil (O'Flaherty, 2002). The compelling reasons for incorporating pozzolans in concrete today process may include the blending of soils to achieve a desired is to improve quality and to extend service life by enhancing the gradation or the mixing of commercially available additives that durability of this ubiquitous construction material. To function may alter the gradation, texture or plasticity, or act as a binder for properly, pozzolans must be amorphous or glassy and generally cementation of the soil (United State Army, 1994). According to finer than 325 mesh in particle size. Finer particle sizes generally O'Flaherty (2002), there are three types of soil-and-cement mixtures have greater reactivity helping in the early strength development as follows; Plastic soil-cement is a hardened mixture of soil and (Vitrominerals, 2005). Pozzolans can continue to react in concrete cement that contains, at the time of placing, enough water to for many years, further strengthening the concrete and making it produce a consistency similar to plastering mortar. It is used to line harder and more durable during its service life. Pozzolans also serve or pave ditches, slopes, and other areas that are subject to erosion. to increase density and reduce the permeability of concrete, which Cement-modified soil is an unhardened or semi hardened helps to make it more resistant to deterioration and swelling mixture of soil and cement. When relatively small quantities of associated with various exposure conditions. Portland cement are added to granular soil or silt-clay soil, the The two major types of pozzolans are; natural and artificial chemical and physical properties of that soil are changed. Cement pozzolans. The natural pozzolans are present on earth's surface reduces the plasticity and water-holding capacity of the soil and such as diatomaceous earth, opaline shale, volcanic ash, tuff and increases its bearing value. The degree of improvement depends pumiced. These materials require further accessing such as upon the guantity of the cement used and the type of soil. In calcining, grinding, drying and so on. The Aegean island of Santorini cement-modified soil, only enough cement is used to change the has volcanic ash, volcanic tuffs, pumicites and opaline shale are physical properties of the soil to the degree desired. Cement- found in the west of River Mississippi in Oklahoma, Nevada, Arizona modified soils may be used for structural foundation base, sub base, and California. Fly ash is an example of artificial pozzolan produced and as trench backfill material.

a mixture of pulverized soil and calculated amounts of Portland Fly ash is 66 - 68% glass. Class F fly ash readily reacts with lime cement and water that is compacted to a high density. The result is (produced when Portland cement hydrates) and alkalis to form a rigid slab having moderate compressive strength and resistance cementitious compounds. Class C fly ash also may exhibit hydraulic to the disintegrating effects of wetting and drying and freezing and (self-cementing) properties. thawing.

– Availability of Fuel Wood and Charcoal

to meet basic energy needs for cooking and heating. Recent studies 2006). Main producers of wood ash are wood industries and power revealed that Nigeria produces about 1 million tons of charcoal plants. Since wood is a renewable source of energy and annually of which 80% is consumed in the cities (FDF, 1986). Fuel environmentally benign friendly material, there will be increased wood and charcoal account for about 50% of the national primary use of wood in energy production in the future. As a result, there energy consumption. Fuel wood is demanded by both household will be increased amount of wood ash generation. Approximately and industrial sectors in all ecological zones of the country. It is three million tons of wood ash is produced annually. Approximately estimated that about 90% of the rural households in Southern 70% of the wood ash is being land filled, around 20% is being used Nigeria and up-to 98% in the Northern Nigeria depend on fuel as soil supplement, and the remaining 10% is being used in wood as their source of domestic energy. Industrial uses include miscellaneous applications. The cost of land filling is increasing due

continuous. The rate at which the soil allows water to pass through those by institutions, food and craft industries. Fuel wood is very

of moisture, chemically react with calcium hydroxide at ordinary Compressibility is a change in the stress system acting on a soil room temperature to form permanent, insoluble compound in a finely divided form, it will react with calcium hydroxide in the presence of moisture to provide a chemical set (Traditional lime, Stabilization is the process of blending and mixing materials with a 2010). The first pozzolans were used by eruptions. One of the

when pulverized coal is burnt in electric power plants. The glassy Compacted soil-cement, often referred to as simply soil-cement, is spherical particulars are the active pozzolani portion of the fly ash.

--- Wood Ash

Wood ash is a by-product of combustion from wood-fired boilers, The predominantly rural population depends mainly on fuel wood at a typical paper mills and other wood burning facilities (Abdullahi,

to passes of strict environmental regulations and limited availability Al2O3, Fe2O3, CaO, MgO, TiO2, K2O, SO3 and organic matter (loss of landfill space (Naik, 2000). In the light of these, it has become on ignition LOI = 27%). essential to develop beneficial uses of wood ashes to solve the Because of its being usually rich in calcium carbonate, which is a problems associated with their disposal.

depending upon various factors such as type or species of performed some investigations into the properties of wood ash trees/wood, method and manner of combustion, efficiency of the from different sources and established their potential for being boiler, and other supplementary fuel used with wood (Naik and used in cement-based construction materials. Naik et al. (2003), in Kraus, 2003). Wood ash is composed of both inorganic and organic an investigation into the use of wood ash in cement-based compounds. Typically between 0.43 and 1.82 percent of the mass materials, found that wood ash could be utilized in making selfof burned wood (dry basis) results in ash. Many types of ash are compacting Controlled Low-Strength Materials (CLSM), airfound near campsites Naik (2000). The composition of wood ash is entrained and non-air-entrained concretes and bricks / blocks / influenced by the type of wood that has been burned. Also the paving stones. Initial test results indicated that wood ash could be conditions of the combustion affect the composition and amount successfully used in making: of the residue ash, thus higher temperature will reduce ash yield. # CLSM (with up to 90% of total materials); Wood ash contains calcium carbonate as its major component, # representing 25 or even 45 percent. According to Naik and Kraus (2003), less than 10 percent is potash, and less than 1 percent phosphate; there are trace elements of iron, manganese, zinc, $_{\#}$ copper and some heavy metals. However these numbers vary as combustion temperature is an important variable in determining wood ash composition. Presence of heavy metals and/or high alkalinity in wood ash may limit its application on land under a stricter environmental regulation.

— Wood Ash as a Pozzolanic Material

Pozzolan can be defined as a siliceous and aluminous material, which in itself possesses little or no cementation value but will in a finely divided form, such as a powder or liquid and in the presence of moisture, chemically react with calcium hydroxide at ordinary room temperature to form permanent, insoluble compound possessing cementitious properties. Pozzolans are commonly used as an addition (the technical term is "cement extender") to Portland cement concrete mixtures to increase the long-term strength and other material properties of Portland cement concrete and in some cases reduce the material cost of concrete. Pozzolans are primarily vitreous siliceous materials which react with calcium hydroxide to form calcium silicates; other cementitious materials may also be formed depending on the constituents of the pozzolan (Abdullahi, 2006).

Misra et al. (1993) found the major elements in wood ash to be calcium, potassium and magnesium, while sulfur, phosphorus and manganese are present at around 1% and iron, aluminium, copper, zinc, sodium, silicon and boron are present in relatively smaller amounts. They found the chemical compositions of wood ash to be mainly carbonates and oxides of the alkali metals, namely CaCO3, K2Ca (CO3)2, Ca(OH)2, MgO, CaO, Ca4Mn3O10, K2SO4 and others. Naik et al. (2003) have tested many sources of wood ash from the USA and Canada and have found their specific gravity to be between 1.6 and 2.8 and unit weight between 365 and 980 kg/m3 (Naik and Kraus, 2003). They also found that the major elements in wood ash to be carbon, calcium, potassium, magnesium, phosphorus and sodium, all in various proportions. Abdullahi (2006) found the specific gravity of wood ash obtained from a bakery in Minna, Niger State, Nigeria to be 2.13 and the bulk density 760 kg/m3 and his analysis showed the chemical constituents as SiO2,

good binding agent and its other chemical components, wood ash The physical and chemical properties of wood ash vary significantly acts as a pozzolana with good stabilizing properties. Naik (2000)

- air-entrained structural-grade concrete up to 28-dav compressive strength of 50 MPa with wood or its blends (up to 40%) of wood ash and coal fly ash;
- non-air-entrained structural-grade concrete (up to 60 MPa 28day compressive strength) with wood ash or its blends with coal fly ash (up to 40%) as partial replacement of cement and,
- good guality bricks/blocks/paving stones with wood ash or its blends with coal fly ash (up to 35%) as partial replacement of cement.

Employing the Pozzolanic property of sawdust ash, it has been used by Elinwa and Ejeh (2004) and with acceptable results as partial replacement for Portland cement in the production of cement mortar. Udoeyo and Dashibil (2002) utilized it as partial replacement for Portland cement in concrete. Though the compressive strength of specimens with sawdust ash was lower at the 28th day, it was observed to gain rapid strength at later ages, indicating a pozzolanic activity of the ash. Abdullahi (2006) successfully used a wood ash obtained from a bakery in Minna, Niger State, Nigeria as partial replacement for Portland cement in the production of concrete. With regards to the usage of wood ash for soil stabilization, according to Andres and Honkala (1978), wood ash is one of the oldest stabilizers known. It is a good water proofer and its binding properties are adequate for stabilizing traditional adobe. It provides strength to the block and prevents cracking because of its chemical composition especially the potassium components, which aid the bonding properties. Fajobi and Ogunbanjo (1994) have used wood ash to impart greater strength to traditional adobe bricks and have determined that the amount of wood ash to be added to soil for optimum compressive strength is about 10% by weight, while Amu et al. (2005) have used wood ash (sawdust) in the stabilization of lateritic soil.

MATERIALS AND METHODS

The materials used include lateritic soil samples, Portland cement, wood ash and water. The lateritic soil samples were collected from excavated foundations located in Ojo, Akinyele at Ibadan, Oyo State and Mokuro at Ile-Ife in Osun State Nigeria. These were designated as samples A, B, and C. The soil samples pre-treatment was ensured before the commencement of the study. For easy identification of the soil samples, tags were placed on them to describe their dates of excavation, depths of excavation from the source and locations.

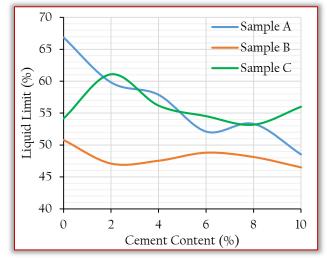
The soil samples were spread on sacks in the laboratory to air-dry contents lower than the plastic limits are normal lateritic soils, them for a minimum of two weeks. The sacks were frequently therefore samples A and B are normal lateritic soils.

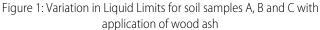
turned to prevent water contamination and direct contact with sunlight. The required quantity of ordinary Portland cement for the study was obtained locally. Wood ash was obtained from hardwood (Iroko tree/planks), bought from a sawmill in Ile-Ife area and burnt in an open drum to get the required wood ash that was sufficient for the study. Potable water was obtained from treated water available in the laboratory.

Preliminary tests such as the natural moisture content, specific gravity, particle size analysis and Atterberg's limits were carried out on three unstabilized soil samples to determine their index The variations in the Atterberg's limits tests for the samples at the properties. The major stabilizing material, cement was thoroughly natural state and when stabilized with 2-10% cement are shown in mixed with the soil samples in varying percentages of (2, 4, 6, 8, 10) Figures 1-3, the liquid limits, plastic limits and the plastic index for % by weight of the soil samples, so as to determine the optimum the natural soil samples respectively for sample A are 66.86%, requirement of cement in the different soil samples. This was done 44.85% and 22.01%, for sample B are 50.78%, 27.40% and 23.38% by determine PI from Atterberg's limit test. The point of lowest PI respectively, and 54.15%, 45.57% and 8.59% respectively for sample gives the optimum amount of cement required. Hence, C. The addition of cement in percentages desired (2%, 4%, 6%, 8% engineering properties of cement stabilized soil was determined. and 10%) to the soil samples caused a change in the Atterberg's These engineering properties are used as the control against which limits of all the soil samples. The optimum cement stabilized for the engineering properties of cement stabilized lateritic soil samples A and B were obtained at 10% and at 8% for sample C. modified with wood ash are compared. The main objective of the study is to determine the change in the engineering properties of the stabilized soil sample modified with wood ash.

Engineering tests such as compaction, California bearing ratio (CBR) and undrained traixial were also performed on them at their natural states, when stabilized with optimum cement and when wood ash powder (WAP) was introduced as pozollan to the samples. The various tests were carried out with standard procedures stipulated in BS 1377-1990:1-8.

RESULTS AND DISCUSSION


The results from the preliminary tests (grain size analysis, natural moisture contents, specific gravity, and Atterberg's limits test) as well as the engineering test (compaction test, California Bearing Ratio test and triaxial test) are presented and discussed below:


— Preliminary Test

The summary of the preliminary test results for soil samples A, B, C are shown in Table 1. The natural moisture content of the selected soil samples A, B and C are 20.19%, 17.72% and 2.39% respectively. The result showed that sample A has the highest natural moisture content and sample C the lowest. The specific gravity of samples A, B and C are 2.33, 2.33 and 2.77 respectively. Bwalya (1998) stated that the performance of lateritic soil may be influenced by the climate, the topography and hydrological regime of the area in which the structure is to be constructed which influences the strength of the soil. The results of the sieve analysis indicated that all the soil samples fall within the granular material group and ranged between A1 - A3 in the AASHTO classification system, suggesting that they are fairly good materials for construction, according to Fajobi (2008), soil is classified into seven major groups A-1 to A-7, soil classified under groups A-I, A-2, A-3 are granular materials while soil classified under groups A-4, A-5, A-6 and A-7 is mostly silt and clay-type materials. Bwalya (1998) in his studies on the relationship between the natural moisture content and the plastic limit indicated generally that soils with natural moisture

Sample	Laple 1: Sommary of bulk bulk bulk bulk bulk bulk bulk bulk					
Sa	Na Mc Cont	G Sp	(LL Liqu	Plast (Pl	Plast (P	
А	20.191	2.33	66.858	44.850	22.008	
В	17.721	2.33	50.782	27.399	23.384	
С	2.390	2.77	54.152	45.567	8.585	

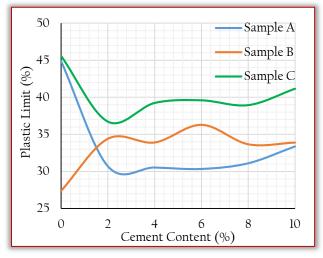


Figure 2: Variation in Plastic Limits for soil samples A, B and C with application of wood ash

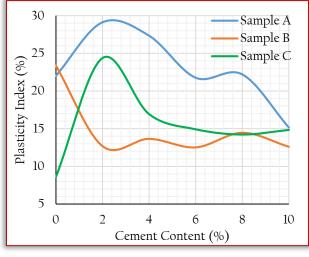


Figure 3: Variation in Plasticity Index for soil samples A, B and C with application of wood ash

---- Engineering Strength Tests

Table 2 shows the summary of the compaction test results at optimum cement stabilization. The Maximum Dry Densities (MDD) of all the samples attained maximum values at 2% wood ash stabilization before dropping. This indicates that the optimum MDD potential for the samples A and B is at 10% cement and 2% wood ash stabilization while that of sample C is at 8% cement and 2% wood ash stabilization.

Table 2: Summary of compaction test results for samples A, B and C

at optimum cement				
Sample	Percentage Stabilization Cement Wood- ash ratio (%)	Optimum Moisture Content (OMC) (%)	Maximum Dry Density (kg/m³)	
	0	20.28	1587.99	
	10:0	19.30	1588.76	
А	10:2	22.80	1588.23	
	10:4	26.61	1483.78	
	10:6	21.29	1462.64	
	0	24.19	1548.89	
	10:0	20.96	1636.09	
В	10:2	22.27	1604.08	
	10:4	24.61	1547.05	
	10:6	21.16	1512.61	
	0	32.49	1506.45	
	8:0	24.22	1555.67	
С	8:2	26.32	1529.42	
	8:4	27.28	1524.51	
	8:6	27.22	1523.62	

The result of the CBR test on samples A, B and C at optimum cement is summarized in Table 3. The addition of wood ash lowered the unsoaked CBR of all the samples. The CBR value of sample A reduced from 11.00 to a minimum of 7.00 at both 2% and 4% wood ash stabilization, while those of samples B and C reduced from 17.00 and 5.00 to 6.00 and 2.00 at 6% and 2% respectively wood ash stabilization.

The summary of undrained triaxial shear strength tests results is presented in Table 4. The shear stresses of the samples increased when stabilized with wood ash at optimum cement contents.

Sample C with a natural shear stress value of 64.88 kN/m² increased to 141.14 kN/m² after stabilization with optimum 8% cement and 6% wood ash contents while those of samples A and B increased from 100.26 kN/m² and 95.76 kN/m² to 112.66 kN/m² and 133.27 kN/m² respectively after stabilization with optimum 10% cement and 4% wood ash contents.

Tabl	e 3: Summa	ry of C	BR test re	esults
_				

Sample	Percentage Stabilization Cement Wood-ash ratio (%)	CBR Value
	0	2.00
	10:0	11.00
А	10:2	7.00
	10:4	7.00
	10:6	8.00
	0	4.00
	10:0	17.00
В	10:2	9.00
	10:4	7.00
	10:6	6.00
	0	2.00
	8:0	5.00
С	8:2	2.00
	8:4	4.00
	8:6	4.00

Table 4: Summary of undrained triaxial test results

Sample	Cement, Wood- ash ratio (%)	Deviator stress (kN/m ²)	Cohesion (kN/m²)	Angle of internal friction (Ø)	Shear stress (τ) (kN/m ²)
	0	160.63	35.56	21.94	100.26
	10:0	180.07	38.67	23.57	117.23
А	10:2	135.56	18.28	26.81	86.79
	10:4	156.39	19.47	30.79	112.66
	10:6	130.38	18.55	26.92	84.75
	0	175.83	72.70	7.47	95.76
	10:0	190.72	40.17	24.40	126.68
В	10:2	220.03	99.62	6.49	124.68
	10:4	221.75	125.37	2.04	133.27
	10:6	182.70	35.79	27.49	130.86
	0	116.67	28.96	17.11	64.88
	8:0	173.25	35.67	27.86	143.64
С	8:2	161.62	45.77	17.20	95.8
	8:4	151.28	32.81	21.68	92.95
	8:6	181.55	23.19	33.01	141.14

CONCLUSION

Stabilization of cement lateritic soil with wood ash improved the quality of soil by significantly reducing the plasticity index, plastic limit and liquid limit of the soil samples. Addition of cement with wood ash to subsoil samples increased their maximum dry densities by significant amount.

The CBR values for the unstabilized subsoil samples were also increased. The CBR values for the stabilized soil samples A and B, increased with the addition of 10% cement and up-to 6% wood ash. The CBR values for the stabilized soil sample C increased with the addition of 8% cement and 6% of Wood Ash.

addition of optimum cement content of 10% and 2% WAP content to sample A and B increased the shear stress of the soil samples while addition of optimum cement content at 8% and 2% WAP ^[16] content increased the shear stress of the soil sample C.

cement stabilized lateritic soil that improves the properties of the subsoil foundation and helps in forming colloidal particles and reduction in the tendency of the subsoil to swell when wet. References

- [1] Abdullahi, M., "Characteristics of wood ash/OPC concrete. Leonardo Electronic Journal of Practices and Technologies", Vol. [19] 5: pp. 9-16, 2006.
- [2] Alhassan, M., and Mustapha, M., "Effect of Rice Husk Ash on Cement Stabilized Laterite. Leonardo Electronic Journal of Practices and Technologies", Vol. 6, No.11: pp. 47-58, 2007.
- [3] Amu, O.O., "Lecture Note on Transportation Engineering II, Department of Civil Engineering, Obafemi Awolowo University, lle-lfe", 2010.
- [4] Amu, O.O., Adewumi, I.K., Ayodele, A.L., Mustapha, R.A., and Ola O.O., "Analysis of California bearing ratio values of lime and wood ash stabilized lateritic soil". Journal of Applied Science Vol. 5: pp. 1479-1483, 2005.
- Andres, C.K. and Honkala, T.I., "Masonry Materials, Design [5] Construction". 1st Ed. Reston Publishing Company Inc., Virginia, 1978.
- Army study guide, (2008). Military Engineers Soil Mechanics. [6] British Standards Institution, Methods of Testing for Soil for Civil Engineering Purpose, BS 1377, London.
- Bwalya, M., "Utilisation and improvement of lateritic gravels in [7] road bases. International Institute for Aerospace Survey and Earth Sciences (ITC)", Section Engineering Geology, Kanaalweg 3, 2628 EB, Delft, Netherland, 1998.
- British Standard 1377-1990:1-8. "Soils for Civil Engineering [8] purposes". British Standards Institution. ISBN 0580 17692 4
- [9] Elinwa, A.U., and Ejeh, S.P., "Effects of the incorporation of sawdust waste incineration fly ash in cement pastes and mortars". Journal of Asian Architecture and Building Engineering Vol. 3: pp. 1-7, 2004.
- [10] Fajobi, A.B., and Ogunbanjo, O.O., "Effect of moisture content and wood ash on the strength of adobe bricks. B.Sc. Thesis (unpublished)", Department of Civil Engineering, Obafemi Awolowo University, Ile-Ife, 1994.
- [11] Federal Department of Forestry, "Nigerian Forestry Action Programme", Abuja, 1996.
- [12] Misra, M.K., Ragland, K.W. and Baker, A.J., "Wood ash composition as a function of furnace temperature", Biomass Bioenergy Vol. 4: pp. 103-116, 1993.
- [13] Naik, T.R., "Wood ash: As a new source of pozzolanic material". Center for By-Products Utilization (CBU) Report. University of Wisconsin, Milwaukee CBU-2000-02 (REP-371), 2000.
- [14] Naik, T.R., Kraus, R.N., and Siddique, R., "Use of wood ash in cement-based materials". Center for By-Products Utilization (CBU) Report, University of Wisconsin, Milwaukee CBU-2003-19 (REP-513), 2003.

- It could also inferred from the shear stress test results that the [15] Naik, T.R., and Kraus, R.N., "A new source of pozzolanic material. Concrete International", Farmington Hills, MI, USA: American Concrete Institute Vol. 25, No. 12: pp. 55-62. 2003.
 - Neville, A.M., "Properties of Concrete, 4th ed.", Pearson Education Asia Ltd, Malaysia, 2000.
- It was therefore concluded that WAP is an effective additive on [17] O'Flaherty, C.A., "Soil-Stabilized Pavements. In: Highways: The Location, Design, Construction and Maintenance of Pavements". C. A. O'Flaherty, ed., Malta, Butterworth-Heinemann, 2002.
 - [18] Oguntona, O.T., "Geotechnical properties of lime stabilized lateritic soils modified with sawdust ash. B.Sc. Thesis (unpublished)", Department of Civil Engineering, Obafemi Awolowo University, Ile-Ife, 2008.
 - Okunade, E.A., "Engineering properties of lateritic adobe bricks for local building construction and recommendations for practice". Journal of Engineering and Applied Science Vol. 2: pp. 1455-1459, 2007.
 - [20] Traditional "Pozzolan lime, <http:// www.traditioallime.com/glossary/>", 2010
 - [21] Udoeyo, F.F., and Dashibil, P.U., "Sawdust ash as concrete material". Journal of Material and Civil Engineering Vol. 14: pp. 173-176, 2002.
 - United State Army, "Soil Stabilization for Pavements. Technical [22] Manual", NO.5-822-Air Force Manual NO. pp. 32-1019. 'Washington, DC, 1994.
 - Vitromineral, "About pozzolan [23] <http:// www.vitrominerals.com/pozzlans, htm>", 2005.
 - Whitlow, R., "Basic soil mechanics, 3rd Ed. John Wiley & Sons Inc.", [24] New York, 1995.

copyright © University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara, 5, Revolutiei, 331128, Hunedoara, ROMANIA http://acta.fih.upt.ro