
ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XII [2019] | Fascicule 4 [October – December]

23 | F a s c i c u l e 4

1.Vaishali CHOUREY, 2.Meena SHARMA

FUNCTIONAL FLOW BLOCK DIAGRAM WITH UML FOR TEST VISUALIZATION

1.IET- DAVV, Indore, Madhya Pradesh, INDIA

Abstract: The use of UML models for testing context is gaining momentum in the existing model based testing scenario. Appending the model
semantics and annotation are important mechanisms to represent functional and nonfunctional properties of design elements. This also leads
to evolution of new models preserving the semantics of underlying models like UML as reference. In current research such models depend on
complex mathematical and graphical notations for its realization. This makes model evolutions or transformations difficult to generate and
tedious to use. However, if the development model is adopted for representing test conditions, it will bridge the semantic and operational gap
between developer and tester. The structural composition and the interaction pattern during runtime are different aspects of visualization. The
analysis of system requires both interpretations to conform for expected behavior. This will serve as an insight for test preference also. This
paper focuses on developing semantics of UML applicable to visualize tests. This includes an abstract notation, Functional Flow Block Diagram
(FFBD) that incorporates the flow semantics into component diagram to better visualize the execution context. This diagram is adopted from
UML and is drawn with intent to visualize test requirements of the system. An important application for reliability analysis is the motivation to
the work. The FFBDs are easily mapped into Reliability Block Diagram (RBD) that associated reliability constraints to the diagram. This facilitates
visualization of quality which is the contribution of the paper.
Keywords: UML models, Functional Flow Block Diagram (FFBD), Functional Flow Block Diagram (FFBD)

INTRODUCTION
Testing is an activity that assures successful execution of
functionality. It focuses on validating the requirements with
possible input and achieving desired behavior. Systems generally
fail due to incomplete or incorrect interactions which were not
estimated during design phase. These interactions include sharing
of data or functionalities within or beyond a system. This, however
are not explored unless executed. Testing designs for early
detection of flaws is a matter of discussion since years. The
understanding of the structure of the system, data that flows
through various components and the dynamic nature of software
today need to be understood. Various diagrams in the UML have
significantly accommodated structural and dynamic constraints of
execution. When we evaluate the software architectures today, we
find that the demand for quality (not only functionality) is the
concern of engineers. The applications draw data from various
sources, manipulate them with various algorithms for a wide range
of applications. In the view of customer, the system needs to be
reliable, secure and robust for giving the performance up to mark.
The responsibility of the developer and the tester has escalated
simultaneously. New methods for the evolving architectures and
the testing strategies need to be devised to deliver quality with
functionality.
The current scenarios in software development exploits reuse
oriented design patterns that are deployed to fulfil the functional
requirements of the system. They are more of coalition based
systems which come from varied sources, technologically and
vendor based. The concept of design is casually taken with a fact
that they do not adapt to implementation requirements and do not
scale or evolve with code. They even lack updated versions while
the interaction of components is required from the various sources.
Our paper is intended to handle these exceptional conditions of
designs. The beauty of the design is however versatile to answer
any such query. Software reuse makes existing components fit into

the design. The quality of the components taken together form the
metrics of quality of the system. A decision-making capability can
be drawn during design stage to select components of high quality
to achieve a better software. The functional attributes along with
non-functional ones can be annotated to serve the purpose. The
strategy will enable design to predict the capabilities of the system
in terms of quality. The challenge is to define such annotations in
the semantics of existing models to make them applicable in
industry practices. The choice of UML models is the preference in
our work. These models have grounded concepts through UML
infrastructure and specifications formally defined and used as
standards. The capability of the UML to extend gives a suitable
dimension for framing our concept into modeling terminologies.
Several models have been used in the analysis of software. The
models for testing applications are an interesting research in the
subject area. Several researches have been made to employ one or
another diagram out of UML for the testing signifying the area of
Model Based Testing. The area is emerging with new technologies
in development. The challenges also float with trends to mark
thrust in the research in the state of art of model based testing. May
it be service oriented systems or designing models or metamodels
for them, the concern for quality is an upright choice. A general
overview of the various issues pertaining to the model based
testing is presented in the figure 1. The concept of component
based testing is relevant to our paper and the domain in which it
shall be applicable is shown in figure 2.
Testing is important for quality. A software requirement if marked
with perspectives and so the testing must also conform to the same
perspectives. Sufficiency is attainted when all the aspects of testing
are fully covered and most of the code is verified. The test oracles
with specific test criteria and proper planning for test process are
important. With the concepts of object oriented and component
based testing, major areas of research has evolved like aspect
oriented, domain oriented or performance testing. This is reflected

A CTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XII [2019] | Fascicule 4 [October – December]

24 | F a s c i c u l e 4

from the new architectures to develop software. Thus a challenge
for the existing design models is to cope up with the new
architectures.

Figure 1: Scenario of model based testing and its application in

current research
Another challenge while using models for testing is reading its
specification to extract relevant test information [18,19]. The UML
specifications effectively model systems with formalism in syntax
and semantic rules. The syntax of the specification defines elements
of the UML in abstract form as diagram and also as textual
descriptions as annotations. The semantic are descriptions in the
form of OCL and other constraints. The model properties are
extracted and used in test automation methods. Several functional
and non-functional characteristics are tested through such
annotations and contribute to an essential characteristic of UML
that is well-formedness. Description logics [22,23], multi-diagrams
[24], are alternatives of knowledge representation and semantics of
UML models. The next section details the research based on various
models and acknowledges the valuable contributions.
The paper is organized as follows. Section 2 reviews and
acknowledges past research in the domain. Section 3 proposes the
methodology of deriving a new representation of system. Later in
the same section are the algorithmic based specification derivation
and its use in test case preparation. It also gives the interpretation
of the FFBD for reliability assessment. Finally, in Section 4 the model
is created and results are expressed. Section 5 is the conclusion that
describes the essential gain from this technique and its scope to
automate the process with the newly derived functional flow
notation.
RELATED WORK
A critical part of development involves testing the code.
Developments in life cycles for Agile Methodology with Test Driven
Development, Test Design First Development, Behavior Driven
Development, have made testing a decisive activity. Model Based
Testing [13, 14] rules with prior system estimates before

implementing it. Models in UML are classified structural and
behavioral to represent the system with different aspects. Certain
algebraic methods and formal / informal models exists that are
based on mathematical analysis of model properties and their
interconnects. These models are more analytical for research and so
fail to be easily adopted for software development practice
methods. But to highlight the contributions, it is the activity
diagram that is most suitable to understand the flow and then can
easily be modulated with graphs for assessment [1-3,11,12]. State
diagrams [16,17] also contribute to test case generation based on
coverage criteria. Class diagrams [20,21,10] are important to
understand the structure of the system, its dependency with other
parts or modules of the system, to estimate complexity in realizing
the behavior through the collection of classes. These diagrams as
stated earlier lead to large amount of tests that are derived from the
transactions stated in requirements [5]. The code thereby
developed also comes in several iterations with subsequent testing
and corrections thereafter. The drawback is that the design does not
get updated with it. So the testing stage has the code to test and
the design faces neglection.
A combination of diagrams is sometimes adopted to generate tests.
A mapped class and state chart [4,7] or an aggregate notation from
sequence and collaboration [8] is seen in papers. Model based tests
does not restrict to identifying defects only but has a broader value
in terms of creating a system model, its analysis in terms of inputs
and outputs, reporting flaws in design, formal report generation
and generating test requirements for future phases [13]. This is an
intelligence imbibed in design which even allows to choose
appropriate from a marketplace to create new systems.
In order to generate the diagrams, the architectural constraints
must be clearly stated. This depends on the type of software being
developed. The quality is an umbrella feature for any software. UML
defines QoS and concepts of fault tolerance as the extensions of
UML profile and specifications. The attributes of quality can be
within a QoS framework and defined appropriately. The same
notation can even extend to define attributes like reliability in the
same UML notation. The paper actually contributes to the test
requirements and quality to represent in developer’s conversant
modeling format like UML. The practice for quality and its inclusion
in early life cycle stages is important to achieve quality throughout
the system phases. An example for which is CISQ. The Consortium
of IT Software Quality (CISQ) defines certain quality characteristic
measures for nonfunctional aspects such as reliability, performance
efficiency, security and maintainability. There are recommendations
for incorporating quality into development and includes certain
best practices for achieving it. For instance reliability can be
achieved by good coding practices like protecting state in
multithreaded environments, safe use of inheritance and
polymorphism, resource bound management and managing the
allocated resources. The same can be stated in architectural
practices like multilayer design compliance, managing data
integrity and consistency, exception handling through transactions,
class architecture compliance and so on. Similarly the QoS
characteristics and constraints can be placed in UML metamodel to
define modeling for quality. QoS characteristics are quantifiable
attributes of system and logically constructor for non-functional

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XII [2019] | Fascicule 4 [October – December]

25 | F a s c i c u l e 4

aspects of quality like latency, throughput, availability, reliability,
safety, confidentiality, integrity, probability and accuracy.
The paper explores possibilities to embed these QoS characteristics
in design properties for evaluating these parameters in the design
stage itself. The next section is a formal definition of our proposed
model. The semantics are of UML and scoped to future aspects like
sustainable designs.
PROPOSED METHODOLOGY
Models are the artifacts generated and used in the stages of
software development. As in conventional systems, all the diagrams
that pertain to system representation are drawn. Other than these
diagrams, a new diagram inspired from System Engineering Flow
Diagram is to be drawn which is illustrated later in this section.
Functional Flow Block Diagram is the formal model that
encompasses the components participating in execution context.
The notation is actually adapted from the activity diagram,
component diagram and system engineering flow diagram. It
characterizes activity diagram with its events and the sequence in
the flow from beginning of the transaction to its end. This is a most
appropriate way to depict the dynamics in the system with
available se of components in the design. It also borrows certain
features of the class diagram to preserve its structural composition
in place.

Figure 2: Proposed Methodology for Test Modeling

Our model aggregates the details from both the diagrams and
creates explanatory diagram similar to a component diagram with
greater details. The process of generating the right model streams
from the requirements started in the early analysis phase. The usual
practice is specifying the functional requirements in the use cases

and realizing it in the activity diagram. We also annotate the non-
functional requirements from the beginning so that it is also
incorporated in the design. For the same we define our feature
model along with use cases. Now the functionalities are drawn
hierarchically in the feature model. We define the levels in our
feature diagram to bring it in an n-tier architecture. The feature
model will somehow represent the component that invokes a set
of another classes or components while execution. The level of
abstraction resolves to a fine-grained level each time such
invocations occur.
The second stage evolves the Functional Flow Block Diagrams with
the semantics as defined in SysML for blocks. The same can be easily
transformed to reliability block Diagram to model reliability within
the design. The assessment is done through this RBD.

Figure 3: Stepwise Model Transformation

The abstract syntax for Block as specified in the SysML standards is
SysML: Blocks: Block which is characterized with constraints,
operations, parts, references, values and properties. A SysML block
defines a system with its features. The Block contains
compartments for each of its characteristics. For example
constraints are written to specify any physical constraints in the
system. The constraints are the places where we can define the
exceptional conditions about the execution of the component. The
blocks are further incorporated with internal blocks and their
properties. The SysML notation [SysML] is shown as in figure

Figure 4: SysML Block

The whole process is a four-stage model transformation strategy
which needs formal annotations. The UML semantics for quality has
been well formulated as QoS Profiles and we annotate the design

A CTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XII [2019] | Fascicule 4 [October – December]

26 | F a s c i c u l e 4

elements with the syntax as mentioned with the profile. The
parameters for quality are broadly defined and are referred as
characteristics. This is described as QoS Characteristics with QoS
values. For example, failure occurs when the behavior of system
differs from the intended behavior. Fault in the same way is the
adjudged or hypothesized cause of an error. The OCL notation for
the same is defined for fault and failure as QoS characteristic with
domain, perception and consequences.
The same semantics for reliability is stated as
<<QoSDimension>>Reliability with the attributes as expected-
number-service-failures: {direction(decreasing)} and
<<QoSDimension>> operation semantic:string type. It is
characterized with the value estimate of failures to define the ability
of the system to keep operating correctly over time.

Figure 5: QoS Characteristics in UML Profile

Availability is syntactically annotated as:
<<QoSCharacteristic>>Availability
<<QoSDimension>>

time-to-repair:real
{direction(decreasing), statisticalQualifier(mean)}

<<QoSDimension>>
time-between-failures:real
 {direction(increasing), statisticalQualifier(mean)}
In the context of availability ie context availability:: availability-post
result OK: result = time-between-failure / (time-between-failures + time-

to-repair)
<<QoSDimension>>

availability-value()
{direction(increasing), statisticalQualifier(mean)}

Another characteristic is fault tolerance which is also defined as
<<QoSCharacteristic>>fault-tolerance
<<QoSDimension>>

max-number-of-faults:
{direction(increasing, statisticalQualifier(maximum)}

<<QoSDimension>>
+error-processing:error-processings

{direction(increasing)}
<<QoSDimension>>

Fault-treatment:fault-treatments
{direction(increasing)}

Once the profile for the component is ready the values pertaining
to the attributes are evaluated for the design of system. The actual
values attained are used for deciding the component for its
inclusion in design. In case the component needs to be backed with
error detection, error control and fault treatment properties, then

the annotation is marked as model property. This reference to
characteristics of QoS in design of system based on reusable
components enables test prioritization [26] for such components so
that reliability is ensured. Regression testing thus has a ranked set
of components based on such properties to clearly state critical
functions.
RESULTS
The test visualization is easily managed through the diagram FFBD
and the assessment of non-functional requirements of quality is
also performed. The structural and dynamic behavior of the system
in line with system engineering conventions is applied for software
systems here. The large-scale systems can easily be decomposed
into hierarchical components and defined within abstractions.

Figure 6: Assessment Model [24]

Figure 7: Reliability Importance for Blocks [24,25]

Thus, a complex system is fit into a single view of representation
here. The reliability estimates for components are generated that
can be annotated into the design. This leads to additional attribute
which defines suitability of that component to fulfil quality
requirements of the system. Rather than complex mathematical
illustrations, the probabilistic modeling confines to a simpler
method of assessment. The scope of the paper restricts the
implementation related analysis, but the methodology is hereby
suggested for the assessment and visualization. The reliability
analysis leads to a parameter of Reliability Importance which
prioritizes the blocks or components for testing purpose also [figure
7]. This is rephrased in the model properties as model characteristics
and subsequently used.
CONCLUSION
This paper focuses on developing FFBDs in the semantics of UML to
visualize tests. This includes defining Blocks in its abstract notation
then incorporating the flow of control into the definition of
components to visualize the execution. This FFBD has been referred
from SysML and is drawn with intent to visualize test requirements
of the system. An important application for reliability analysis is
presented in this paper k. The FFBDs are easily mapped into

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XII [2019] | Fascicule 4 [October – December]

27 | F a s c i c u l e 4

Reliability Block Diagram (RBD) for further analysis of reliability of
the system. As this is a part of testing, therefore we recommend our
methodology for the test based visualization in model based design
and testing. This may further be applied with agile or test driven
development strategies for evaluation.
References
[1] Debasish Kundu and Debasis Samantha, A Novel Approach to

Generate Test Cases from UML Activity Diagrams, Journal of
Object Technology, June 2009.

[2] Dong Xu, Huaizhong Li, ChiouPeng Lam, Using Adaptive Agents
to Automatically Generate Test Scenerios from the UML Activity
Diagram, IEEE Proceedings of the 12th Asia-Pacific Software
Engineering Conference (APSEC’05), 2005.

[3] AnnamarialeChandran. Model Based Testing – Executable State
Diagrams, Published in STEP-AUTO 2011, AVACorp Technology,
Chennai.

[4] PVR Murthy, PC Anitha, M Mahesh, Rajesh Subramanyan. Test
Ready UML Statechart Models, SCESM '06 Proceedings of the
International Workshop on Scenarios and State Machines:
Models, Algorithms, and Tools, 2006.

[5] Bernhard K. Aichernig, HaraldBrandl, Elisabeth Jobstl, Willibald
Krenny. UML in Action: A Two-Layered Interpretation for Testing,
Published in ACM SIGSOFT January 2011 Volume 36 Number 1.

[6] Mingsong Chen, XiaokangQiu, Wei Xu, Linzhang Wang, Jianhua
Zhao And Xuandong Li. UML Activity Diagram-Based Automatic
Test Case Generation For Java Programs, The Computer Journal
Advance Access published August 25, 2007.

[7] OrestPilskalns, Andrew Knight. Testing UML Designs, Published in
Information and Software Technology (49), 2007, Science Direct.

[8] Rumpe,B. : Agile Test Based Modeling. In: Proceedings of the 2006
International Conference on Software Engneering Research and
Practice. (SERP). Volume 26. (2006) 10-15

[9] KenroYatake, Toshiaki Aoki. SMT Based Enumeration of Object
Graphs from UML Class Diagram, ACM SIGSOFT Software
Engineering Journal, July 2012 Volume 37 Number 4.

[10] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li Xuandong
and ZhengGuoliang. Generating UML Test Cases from UML
Activity Diagram Based on Gray Box Method, Proceedings of 11th
Asia Pacific Software Engineering Conference, IEEE ‘04.

[11] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed Hashem and
Mohamed F.Tolba. A Proposed Test Case Generation Technique
Based on Activity Diagrams, International Journal of Engineering
& Technology IJET-IJENS Vol: 11 No: 03 June 2011.

[12] Jonas Boberg, Early Fault Detection with Model-Based Testing,
Erlang’08, September 27, 2008, Victoria, BC, Canada ACM 2008.

[13] MrkUtting, Position Paper: Model Based Testing.
[14] Santoshkumar Swain, Model Based Object-Oriented Software

Testing, Journal of Theoretical and Applied Information
Technology (JATIT 2005-2010)

[15] Richard Torkar, Robert Feldt, and Tony Gorschek, Extracting
Generally Applicable Patterns from Object-Oriented Programs for
the Purpose of Test Case Creation.

[16] Harry M. Sneed, ANECON GmbH, The Drawbacks of model-driven
Software Evolution, 2010.

[17] Philip Samuel, Rajib Mall.: Slicing Based Test Case Generation
from UML Activity Diagrams. In: ACM SIGSOFT Software
Engineering Notes, Volume 34, Number 6(2009)

[18] A Cavalli, S.Maag, S. Papagiannaki and G. Verigakis,: From UML
Models to Automatic Generated Tests for the dotLRN e-learning
Platform. In: Electronic Notes in Theoretical Computer Science,
116:133-144(2004)

[19] Z.M.Ma, Li Yan, Fu Zhang.: Modeling Fuzzy Information in UML
Class Diagrams and Object Oriented Database Models. In: Journal
of Fuzzy Sets and Systems 18626-46 (2012)

[20] Tong Yi, Fangjun Wu, ChengzhiGan.: A Comparison of Metrics for
UML Class Diagrams. In: ACM SIGSOFT Software Engineering
Notes, Volume 29, Number 5 (2004)

[21] Berkenkötter, Kirsten. "Reliable UML models and profiles."
Electronic Notes in Theoretical Computer Science 217 (2008):
203-220.,

[22] Z.M. Ma, Fu Zhang, Li Yan, Jingwei Cheng, Representing and
reasoning on fuzzy UML models: A description logic approach,
Expert Systems with Applications 38 (2011) 2536-2549

[23] Luciano Baresi, Angelo Morzenti, Alfredo Motta, Matteo Rossi, A
Logic-based Semantics for the Verification ofMulti-diagram UML
Models, ACM SIGSOFT Software Engineering Notes July 2012
Volume 37 Number 4

[24] Chourey V, Sharma M. Component based reliability assessment
from uml models. InAdvances in Computing, Communications
and Informatics (ICACCI), 2015 International Conference on 2015
Aug 10 (pp. 772-778). IEEE

[25] Chourey V, Sharma M. Functional flow diagram (FFD): semantics
for evolving software. In Advances in Computing,
Communications and Informatics (ICACCI), 2016 International
Conference on 2016 Sep 21 (pp. 2193-2199). IEEE.

[26] Strandberg, Per, Wasif Afzal, Thomas Ostrand, Elaine Weyuker,
and Daniel Sundmark. "Automated System Level Regression Test
Prioritization in a Nutshell." IEEE Software (2017).

ISSN: 2067-3809

copyright © University POLITEHNICA Timisoara,
Faculty of Engineering Hunedoara,

5, Revolutiei, 331128, Hunedoara, ROMANIA
http://acta.fih.upt.ro

