
ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067-3809]
TOME XIII [2020] | FASCICULE 2 [April – June]

65 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

1.S. KANNAPPAN, 2.S. Aruna MASTANI

A SURVEY ON MULTI-OPERAND ADDER

1-2.Jawaharlal Nehru Technological University (JNTUA), Ananthapuramu, INDIA

Abstract: The processors are required to perform computationally intense operations in the modern data world and an
Arithmetic Unit (AU) is the heart of the processor that contributes for its performance. It’s an ever ending research to
optimize the AU w.r.t. architecture area and latency for improving the performance of the processor. Adder forms the
basic Building block of any AU, and in particular addition of multiple operands is required in complicated arithmetic
operations like multiplication, convolution, Transforms etc. Hence existing circuits for efficient Multi-operand adder in
terms of circuit area and delay are discussed. The Multi-Operand Adders is optimized in many ways; the most popular
methods are discussed in brief with respect to their performance. Memory-based computing is becoming an important
approach to achieve fastness and cost effectiveness in contrast to conventional logical approach, and Distributed
Arithmetic (DA) is a process of replacing logic elements with small memories or LUTs to optimize the circuit complexity.
This paper presents various methods of Multi-Operand Adders and various optimizations for Multi-Operand Addition.
Keywords: carry save adder, compressor, generalized parallel counter, adder tree

INTRODUCTION TO OPTIMIZATION OF
ARITHMETIC COMPUTATIONS
The optimization of Arithmetic Units are started with
the adder more particularly Multi-Operand Adder in
case of computationally intense applications. Most of
the Multi operand adder implementations are based
on optimizing either compressor logic for reduction
in partial sum or the optimization of tree structure for
reducing the carry propagation. The existing
techniques are effective for addition of less number of
operands only. The Area and delay of the circuit
increase linearly for addition of large number of
operands. The addition of large operands was
implemented using bit partition technique. In 1973,
S. Singh and R. Waxman described a scheme for
multiple operand addition and multiplication [16],
applying the bit-partitioning technique for adding ‘K’
number of operands of N bits each. In this scheme
each partition contains m-bits, where m = ⌈log2(K −
1)⌉. The final sum is obtained in m + 1 addition cycles;
the overall delay depends on delay of addition cycle.
It is inefficient for addition of large number of
operands.
In the tree structured adder the delay is reduced but
area increased with number of operands. In serial
addition of multi operands the number of clock cycles
(called Latency) increase with increase in number of
operands so, the existing implementations of multi
operand adders are not effective in optimizing area
and delay for large number of operands. The various
techniques of Multi-Operand Adders using Tree
structure is discussed in Section II & III, the Multi-
Operand Adder using Generalized Parallel Counters is
discussed in Section-IV.
COMPRESSOR TREE STRUCTURE OF ADDERS
The Multi-Operand Adders are generally
implemented in two methods i.e Array Adders and
Adder Tree structure. In Array Adder structure, two
operands are added and output is added with third

operand and continues the chain of addition until to
get final sum output. It requires ‘K’ number of adder
levels for addition of ‘K’ operands. But in case of Adder
Tree structure the number of levels to add ‘K’
operands is less than that of Array Adders. It groups
‘K’ number of operands into sets of two operands. All
the sets are added parallel in one level. The sum
outputs from first level again grouped into sets of two
operands and perform addition. This process
continues until to get two operands and added in last
level to obtain final sum. In each level it reduces
number of operands to half. Therefore it requires
log2 K levels. The Adder Tree structure is faster than
Adder Array structure with same resources consumed
by both configurations. But the Array Adder is having
regular routing than Adder Tree structure.
The Ripple Carry Adder (RCA) or Carry Look Ahead
Adder (CLA) are two general Carry Propagate Adders
used in the above methods i.e. Array Adder, Adder
Tree is Carry Propagate Adder. The delay of their CPA
depends on bit length of operand. For N-bit operand
the of RCA proportional to N and for CLA it is
proportional tolog2 N. To reduce the delay these
adders where implemented on FPGA by using
dedicated carry chains [8]. The RCA on FPGA using
fast carry chain is simpler than any other CPA
topologies at an expense of high hardware cost [9].
The pipelining technique can be applied more
effectively RCA [1]. The delay of Adder Tree using CPA
is high due to carry propagation along the bit length.
Carry Save Adder tree is used as another approach for
implementing Multi-Operand Adders. Here the carry
is directly propagated to next level instead of
propagating in the same as in case of CPA. The
advantage of Carry Save Adder (CSA) tree is utilized
in ASIC implementation due to flexible routing. The
critical path delay can be minimized by optimizing
the interconnection between Full Adders. But to
implement on FPGA the Ripple Carry Adder tree is

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e–ISSN: 2067–3809]
TOME XIII [2020] | FASCICULE 2 [April – June]

66 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

preferred than CSA adder tree. When CSA tree is
implemented on FPGA it become slower than RCA tree
due to routing delay of CSA. However, a
straightforward implementation on FPGAs [6]
roughly requires double hardware than a carry-
ripple adder, and does not exploit the fast carry chain
to improve speed. This was partially solved by the
compressors which compress the operands more than
CSA tree [5], [7].
In 2005, R. D Kenney et al. [10] introduced and
analyzed three techniques for performing fast
operands addition [10]. Multi-operand adder designs
are constructed and synthesized for 6 to 12 input
operands. In 2005, J. Villalba et al. have studied the
on–line addition of multiple operands for
conventional, carry–save (CS) and/or Signed–Digit
(SD) numbers [11]. They have proposed a new and
key element called on-line Full Adder which is used in
CSA tree to perform Multi-Operand Addition serially.
The on-line Full Adder contains a 1-bit delay register
at the sum bit output of FA. An external delay element
also inserted at every skipped level in tree structure to
maintain proper timing. The on-line Full Adder is
used to reduce the hardware resources and cycle time.
In 2009, Manuel Ortiz et al. [12] have implemented
3:2 and 4:2 compressors using Dedicated carry chain
in FPGA. When more than three operands are to be
added the 4:2 compressors is preferred because it fully
utilizes the logic of the slice and achieves high speed
than 3:2 compressor with same resources. In 2009,
William Kamp et al. [13] has implemented the basic
3:2 and 4:2 compressors using dedicated carry chain
for redundant numbers to eliminate carry
propagation. So that the delay is maintained nearly
constant even for large operand width targeting low
cost FPGAs.
In 2013 J. Harmigo et al. [14] was proposed a
complete compressor tree using the dedicated fast
carry chain unlike basic compressors developed in
[12], [13]. They developed a linear array of carry save
adder by mapping to preceding stages of FAs to
conventional Ripple Carry Adders (RCA) or ternary
adders. The delay is much smaller with equivalent
resources compared to Adder Tree using RCA. Due to
shorter carry chain it would be fastest choice for
combinatorial multiple operand adders but it is
inefficient as it is has irregular shaped compressor
trees.
WALLACE TREE ADDER
In 2017, S.D. Thabah et al. [15] have analyzed
different types of Multi-Operand adders in terms of
propagation delay, power consumption and resource
utilization. From the synthesis reports they have
concluded that Wallace Tree Adders are the high
speed and less power consuming circuit.
Even though the Carry Save Adder tree based on Carry
Propagate Adders provide easy for implementation,

Wallace tree adder is an efficient architecture for
implementing Multi-Operand Adder tree which gives
lowest propagation delay and least power
consumption compared to other implementations
even for increasing number of operands and bit size.
However Wallace tree architecture is not a regular
structure so, for large number of operands the circuit
complexity increases along with routing Delay.
MULTI-OPERAND ADDERS USING GENERALIZED
PARALLEL COUNTERS
The concept of using Compressor trees has a history
in the design of arithmetic units for microcomputers
since 1964. C. Wallace has proposed a compressor
tree structure called Wallace tree [17] to optimize the
multiplier, and L. Dadda in 1965 has given with the
concept of counting number of ones in a column of
binary bits by a tree structure called Dadda tree [18].
The concept of compressor is to avoid the slow carry
propagation by passing the carry to the next
compressor stage instead of propagating it within the
same stage, which guarantees speed-up in
Application Specific Integrated Circuits (ASICs) or
custom ICs. The carry save arithmetic is not suitable
for implementation on FPGA for a long time. As the
CSA tree has large routing so that it become slower on
FPGA because the dedicated carry chains available in
modern FPGAs which are significantly faster than
FPGA’s routing fabric. However, compressors are
implemented using dedicated carry chains as
discussed in the previous sections it was first shown
by Parandeh-Afshar et al. [7] in 2008 that a
significant delay improvement can be obtained by
using compressor trees on FPGAs by using the concept
so called Generalized Parallel Counters (GPCs). The
Multi-Operand Adder using GPCs provide a better
utilization of the look-up tables (LUTs). They achieved
delay reductions of about 30% while having a slight
resource overhead of 5%. However, the design of the
compressor tree is much more complex compared to
the simple classic algorithms from Dadda [18] or
Bickerstaff [21]. They provided a heuristic [7] as well
as an exact integer linear programming (ILP) method
[20].
In 2015, Burhan Khurshid et al. [22], implemented
Generalized Parallel Counter (GPC) on Look up
Tables. The Generalized Parallel Counters (GPCs) are
used in constructing high speed compressor trees
along with specialized fast carry chain in existing
methods. The fast carry chain is eliminated from the
previous existing GPC structure and has focused on
achieving efficient mapping of GPCs on FPGAs by
using only general Look-up table (LUT) fabric. The
resulting structures are purely combinational and
cannot be efficiently pipelined to achieve the potential
FPGA performance. So the delay cannot be optimized
for large number of operands.

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067-3809]
TOME XIII [2020] | FASCICULE 2 [April – June]

67 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

In 2018 Martin Kumm et al. [25] was developed
“Advanced compressor Tree Synthesis for FPGA” in
which it proposed to combine Improved Generalized
Parallel Counters and Integer Linear Programming to
optimize the delay and resource utilization. The
improved GPC is a combination of GPC for column
compression and a 4:2 row compressor. This gives a
better result in terms of delay and resource utilization.
Therefore many approaches for Multi-Operand
Adder were proposed in literature on Column
compressor for counting one’s in a column of bits,
Generalized Parallel Counters (GPCs) also called
multicolumn counters (different weighted column
bits), which are also mapped with LUT’s and some
row compressor i.e 4:2 (four binary numbers reduced
to two binary numbers) and optimization algorithms
(Integer Linear Programming) for compressors.
CONCLUSIONS
For adding large number of operands, the Multi-
Operand Adder using carry save arithmetic require
more delay and complex hardware. Carry save
addition is a row wise addition. To optimize area and
delay column wise addition i.e compressors is an
alternative approach. These compressors are
generalized as Generalized Parallel Counters (GPC’s)
to add multiple operands in parallel. But choosing
required number of GPC’s and optimizing these GPC’s
is an overhead. Many optimization algorithms were
combined with GPC’s for better performance. And
also these GPC’s are combined with FPGA carry chain
logic for efficient implementation on FPGA devices.
Some of the techniques are combination of row
compressors and mapping of GPC’s on Look Up Tables
in FPGA with optimization algorithms. In the recent
techniques Distributed Arithmetic is adopted for
implementing multi-Operand Addition in Filters
where small distributed memory elements are used to
store pre-computed values and achieving required
value with additional hardware. These memory based
implementations are well suited for both ASIC as well
as FPGA. In future, Artificial Intelligence (AI) will
become necessary for most the applications in the
modern word. The AI requires a large number of
calculations, mappings with less time as well as with
smaller circuit chips. Memory based computing will
become a choice for deep learning and Machine
learning in AI.
References
[1] S. Yu and E. E. Swartzlander, “DCT implementation

with distributed arithmetic”, IEEE Transactions on
Computers, vol. 50, no. 9, pp. 985–991, Sept. 2001.

[2] T.-S. Chang, C. Chen, and C.-W. Jen, “New distributed
arithmetic algorithm and its application to IDCT,” IEE
Proceedings Circuits, Devices and Systems, vol. 146,
no. 4, pp. 159–163, Aug. 1999.

[3] T.-S. Chang and C.-W. Jen, “Hardware-efficient
implementations for discrete function transforms
using LUT-based FPGAs,” IEE Proceedings Circuits,

Devices and Systems, vol.146, no. 6, pp. 309–315,
Nov. 1999.

[4] F. de Dinechin, H. D. Nguyen and B. Pasca, Pipelined
FPGA Adders, LIP Research Report no. ensl-
00475780, Apr. 2010.

[5] J. Hormigo, M. Ortiz, F. Quiles, F. J. Jaime, J. Villalba
and E.L. Zapata, Efficient Implementation of Carry-
Save Adders in FPGAs, 20th IEEE international
Conference on Application-Specific Systems,
Architectures and Processors, pp. 207–210, Jul. 2009.

[6] P. M. Martinez, V. Javier, and B. Eduardo, On the
design of FPGA-based Multioperand Pipeline Adders,
XII Design of Circuits and Integrated System
Conference, 1997.

[7] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient
Synthesis of Compressor Trees on FPGAs,” in Asia and
South Pacific Design Automation Conference
(ASPDAC). IEEE, 2008, pp. 138–143.

[8] Xilinx Inc., Virtex-6 User Guide, 2009,
http://www.xilinx.com/.

[9] S. Xing and W. H. Yu, FPGA Adders: Performance
Evaluation and Optimal Design, IEEE Design and Test
of Computers, vol. 15, no. 1, pp. 24–29, Jan.- Mar.
1998.

[10] R. D. Kenney and M. J. Schulte, “High-Speed
Multioperand Decimal Adders”, IEEE Transactions on
Computers, vol. 54, no. 8, pp. 953-963, Aug. 2005.

[11] J. Villalba, J. Hormigo, J. M. Prades and E. L. Zapata,
“On–line Multioperand Addition Based on On–line
Full Adders∗”, in Proc. Int. Conf. on Application-
Specific Systems, Architecture Processors (ASAP'05),
pp. 322-327, 2005

[12] M. Ortiz, F. Quiles, J. Hormigo, F. J. Jaime, J. Villalba,
and E. L. Zapata, “Efficient Implementation of Carry-
Save Adders in FPGAs,” in IEEE International
Conference on Application-specific Systems
Architectures and Processors (ASAP), 2009, pp. 207–
210.

[13] W. Kamp, A. Bainbridge-Smith, and M. Hayes,
“Efficient Implementation of Fast Redundant Number
Adders for Long Word- Lengths in FPGAs,” in 2009
International Conference on Field- Programmable
Technology (FPT). IEEE, 2009, pp. 239–246.

[14] J. Hormigo, J. Villalba, and E. L. Zapata,
“Multioperand Redundant Adders on FPGAs,”
submitted to IEEE Transactions on Computers, vol. 62,
no. 10, pp. 2013– 2025, 2013.

[15] S. D. Thabah; M. Sonowal and P. Saha
,“EXPERIMENTAL STUDIES ON MULTI-OPERAND
ADDERS”, INTERNATIONAL JOURNAL ON SMART
SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO.
2, JUNE 2017

[16] S. Singh and D. Waxman, “Multiple Operand
Addition and Multiplication”, IEEE Transactions on
Computers, vol. C-22, no. 2, pp. 113-120, Feb. 1973.

[17] C. Wallace, “A Suggestion for a Fast Multiplier,” IEEE
Transactions on Electronic Computers, no. 1, pp. 14–
17, 1964.

[18] L. Dadda, “Some Schemes For Parallel Multipliers,”
Alta Frequenza, vol. 45, no. 5, pp. 349–356, 1965.

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e–ISSN: 2067–3809]
TOME XIII [2020] | FASCICULE 2 [April – June]

68 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

[19] A. Omondi and B. Premkumar, Residue Number
Systems: Theory and Implementation. Imperial
College Press, 2007.

[20] A. R. Meo, “Arithmetic Networks and Their
Minimization Using a New Line of Elementary Units,”
submitted to IEEE Transactions on Computers and
currently under review, vol. C-24, no. 3, pp. 258–
280, 1975.

[21] K.A.C. Bickerstaff, M. Schulte, and E.E. Swartzlander,
“Reduced area multipliers,” in Application-Specific
Array Processors, 1993

[22] Suhas B. Shirol, S. Ramakrishna and Rajashekar B.
Shettar, “Design and Implementation of Adders and
Multiplier in FPGA Using ChipScope: A Performance
Improvement”, Information and Communication
Technology for Competitive Strategies pp 11-19, 31
August 2018

[23] Duncan J. M. Moss , David Boland, and Philip H. W.
Leong, “A Two-Speed, Radix-4, Serial–Parallel
Multiplier”, IEEE TRANSACTIONS ON VERY LARGE
SCALE INTEGRATION (VLSI) SYSTEMS, (Volume:
27 , Issue: 4 , April 2019) Page no. 769 – 777.

[24] Martin Kumm and Johannes Kappauf.” Advanced
Compressor Tree Synthesis for FPGAs”, IEEE
Transactions on Computers (Volume: 67 , Issue: 8 ,
Aug. 1 2018).

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering

ISSN: 2067-3809
copyright © University POLITEHNICA Timisoara,

Faculty of Engineering Hunedoara,
5, Revolutiei, 331128, Hunedoara, ROMANIA

http://acta.fih.upt.ro

