
ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067–3809] 
TOME XIII [2020] | FASCICULE 3 [July – September] 

43 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara  
http://acta.fih.upt.ro/ 

1.S.K. SHINDE, 2.R.M. MORE 
 

FAULTS FINDING ANALYZER OF WEB APPLICATIONS 
 
1.Vidya Pratishthan's Kamalnayan Bajaj Institute of Engg. & Technology, Baramati, Dist. Pune, INDIA 
2.Shree Datta Polytechnic, Shirol, INDIA 
 
Abstract: Web text and dynamically generated web pages exist common errors, and they seriously affect the usability of 
Web applications. Current tools to webpage validation cannot manage the dynamically created pages that are ever-present 
in today's Internet. The proposed tool takes source code files as information sources. It removes HTML, ASP tags and logic 
codes from extracted files. Then the proposed tool discovers HTML faults and execution faults from these extracted files. 
The method used to make test cases automatically runs the tests taking constraints from the resource database on inputs 
and reduces the requirements on inputs to failing tests so that the resulting defect reports are small and important in 
finding the faults. Our proposed tool implements the technique for Web technologies such as PHP, C#, ASP.net. The tool 
makes test inputs for a Web application, controls the application for crashes, and confirms that the output conforms to the 
HTML specification. The proposed tool is to act as a testing tool to find faults from all LOC (line-of-code) in web 
applications. Comparatively more advanced tools find faults during the rendering process, so it uses line coverage so less 
as compared to the proposed tool. 
Keywords: Faults, Bug Finder, basic validator, Web Applications, failures 
 
 
INTRODUCTION 
Powerful test creation tools, such as DART [1], Cute 
[2], and EXE [3], make tests by executing an 
application on input values and then building 
additional input values by solving symbolic conditions 
obtained from exercised control paths. Such 
approaches have not been studied in the domain of 
web applications, which pose special challenges due to 
the dynamism of the coding languages, the advantage 
of implicit parameters, their use of persistent state, and 
their designs of user interaction. The offered work 
continues dynamic test generation to the area of web 
applications that dynamically create web pages during 
execution, which are typically given to the user in a 
browser. Web development languages including 
server-side web programming languages such as PHP, 
ASP.net, and C# are used as input in the proposed 
work [4]. 
Our goal is to find two classes of failures in web 
applications: execution crashes that show as errors or 
warnings during the process execution, and HTML 
failures that happen when the application allows 
twisted HTML. Execution flops may occur, for 
example, when a web form calls an irregular function 
or reads a missing file. Some HTML code includes an 
error warning, and execution of the application may 
be suspended, depending on the hardness of the 
fault.  If the input contains not syntactically well-
formed HTML, then the proposed tool generates 
output containing HTML faults. HTML faults are 
generally not as notable as execution faults because 
Web browsers are intended to provide some degree of 
malformedness in HTML, but they are unacceptable 
for several reasons. The first and most critical is that 
browsers' attempts to compensate for malformed web 
pages may lead to crashes and security vulnerabilities. 
Second, standard HTML performs faster. Third, 

deformed HTML is less portable across browsers and is 
vulnerable to breaking or watching apart when 
displayed by untested browser versions. Fourth, a 
browser force succeeds in presenting only part of a 
malformed webpage, while silently discarding 
important information. Fifth, search engines may have 
trouble indexing deformed pages [13]. 
 Web developers widely know the importance of 
creating error-free HTML. HTML validators are used 
to control many websites. However, HTML validator 
can only point out problems in HTML pages and are 
by them incompetent of finding faults in applications 
that generate HTML pages. Checking dynamic Web 
applications requires checking that the application 
creates a valid HTML page on every possible execution 
path. In practice, even professionally developed and 
thoroughly tested applications often include multiple 
faults.  So, this tool has implemented using symbolic 
execution to find faults in web applications. This 
scheme continues dynamic test creation to the area of 
web applications that dynamically create the HTML 
pages throughout execution, which offer to the user in 
a browser. 
LITERATURE REVIEW 
The main strength of DART is that testing is often 
performed completely automatically on any program 
that compiles – there's no got to write any driver or 
harness code. During testing, DART detects standard 
errors like program crashes, assertion violations, and 
non-termination. Preliminary experiments to unit test 
several samples of C programs are very encouraging. 
[1] 
In unit testing, a program was divided into units of 
collection of methods. A piece of the unit can try by 
creating contributions for solitary section work. The 
entry method may contain pointer contentions, in 
which case the contributions to the unit are memory 



ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e–ISSN: 2067–3809] 
TOME XIII [2020] | FASCICULE 3 [July – September] 

44 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara  
http://acta.fih.upt.ro/ 

graphs. The paper talks about the issue of mechanizing 
unit testing with memory charts as sources of info. The 
methodology utilized expands on before work 
consolidating representative and reliable execution, 
and all the more explicitly, utilizing such a request to 
produce test contributions to investigate all plausible 
execution ways.  CUTE [2] is a variation on the DART 
approach.[2]  
EXE is a valuable bug-discovering system that 
automatically creates inputs that crash genuine code. 
EXE utilizes secure, piece level precise representative 
execution to discover significant mistakes in code and 
naturally create inputs that can hit these faults [3] 
Fuzz testing is a valuable method for discovering 
security vulnerabilities in programming. Customarily, 
fluff testing devices apply irregular transformations to 
very much framed contributions of a program and test 
the different qualities. Paper introduces an option 
white box fuzz testing approach motivated by ongoing 
advances in symbolic execution and dynamic test 
generation. Their methodology records a genuine keep 
running of the program under test on very much 
framed information, emblematically assesses the 
recorded follow, and assembles limitations on sources 
of info catching how the program utilizes these. The 
gathered requirements are then invalidated one by one 
and unraveled with a limitation solver, creating new 
information sources that activity diverse control ways 
in the program [9]. 
PROPOSED WORK 
The system architecture is the conceptual model that 
defines the structure and behavior of the system. An 
architecture description is a precise representation of 
a system. System architecture represents the structure 
of system components, external visibility of those 
components, and their relationships between them. 
The language used for architecture description is 
called the architectural description language. 

 
Figure 1: The Proposed system for finding faults in 

websites 
The proposed tool is to implement our technique for 
Web Technology. This module consists of the 
following major components, input generator, 
executer, and bug finder illustrated in Figure 1. 

 The executor is responsible for executing a web 
programming script with a given input in a given 
state. The executor contains two subcomponents: 

(a) The Language Interpreter is a language 
interpreter that we modify to propagate and 
record path constraints and positional 
information associated with the output. This 
positional knowledge use to determine which 
failures are likely to be symptoms of the same 
fault.  

(b) The State Manager restores the given case of the 
environment (database, session, and cookies) 
before the execution and stores the new 
environment next to the execution. 

 The Input Generator implements the algorithm 
described below. The Input Generator contains 
the following subcomponents: 

(a) The User Interface Analyzer examines the HTML 
code output of each execution to change the 
interactive user choices into new inputs to 
execute. 

(b) The Driver generates new path checks from the 
checks found during the execution. 

(c) The Constraint Solver computes an task of values 
to input parameters that satisfy a given path 
checks. 

 The Bug Finder practices an oracle to find HTML 
failures, stores all bug reports, and finds the 
minimal requirements on the input parameters for 
each bug report. The Bug Finder has the following 
subcomponents: 

(a) The database stores the HTML faults in the output 
of the program. 

(b) The Bug Report database stores HTML and 
execution faults report found during all 
executions. 

(c) The Input Minimizer determines, for an assigned 
bug report, the shortest path constraint on the 
input parameters that results in inputs producing 
the same failure as in the report. 

EXPERIMENTAL SETUP 
This module program has implemented using C#.net. 
The experiment is carried out by different input 
datasets and analyzing output with the dataset in the 
Windows 7 operating system. We have taken four 
datasets implemented using PHP server-side scripting 
language.  
Table 1 shows a time practiced for the detection of 
faults by the existing tools and time needed for the 
detection of faults for the proposed tool. The proposed 
tool takes less time for the detection of execution and 
HTML faults present in the web applications as 
compared to the existing tools. 
 
 
 
 



ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067-3809] 
TOME XIII [2020] | FASCICULE 3 [July – September] 

45 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara  
http://acta.fih.upt.ro/ 

 
Table 1: Time required to process input 

 Time ( in seconds) 
required to process 

Input Proposed 
System 

Existing  
System 

timeclock 210 425 
Phpbb2 195 420 

Phpsysinfo[17] 300 720 
Synthetic Website Dataset 1 256 505* 
Synthetic Website Dataset 2 350 680* 

‘*’ Indicates expected values for time requirement to find 
faults generated by existing systems. 

 

 As a shown in table 1 above, execution time reduced 
to 50% averagely due to system executes line of code 
sequentially. In case of existing systems, generate 
input dynamically hence time required to execute 
LOC is high. Also LOC for existing system is below the 
50% while proposed system used more than 90% 
except scripting (Java Script, VB Script) 

 
Figure 2: Time Required Comparison 

Figure 2 shows some faults detected by the proposed 
tool and the existing tool. 
 

Table 2: Error detection 
 No of errors detected 

Input Proposed 
System 

Existing  
System 

timeclock 395 387 
Phpbb2 35 30 

Phpsysinfo[17] 17 9 
Synthetic Website Dataset 1 158 151* 
Synthetic Website Dataset 2 60 54* 
‘*’ Indicates expected values for errors generated by 

existing systems. 
 

Table 2 shows better performance by the proposed 
system to find faults in respective datasets. 

 
Figure 3: Error Detection Comparison 

 

Table 3: LOC coverage 
 LOC coverage (%) 

Input Proposed 
System 

Existing  
System 

timeclock 94 26.8 
Phpbb2 92 31.7 

Phpsysinfo[17] 91 56.2 
Synthetic Website 

Dataset 1 96 52* 

Synthetic Website 
Dataset 2 90 54* 

‘*’ Indicates expected values for LOC (line of code) 
coverage generated by existing systems. 

 

Table 3 shows excellent LOC coverage by the 
proposed system with compare to existing system. 

 
Figure 4:  LOC coverage 

CONCLUSION 
We have introduced a technique for finding faults in 
web applications implemented in PHP and C#.net 
technology. This tool is to give a new approach to 
detecting HTML and execution faults. This tool has 
utilized the dynamic inputs to check the fault events 
and perform an automated examination to decrease 

0
100
200
300
400
500
600
700
800

Time ( in seconds) required to process Proposed
System

Time ( in seconds) required to process Existing
System

0

100

200

300

400

Proposed System Existing  System

0
10
20
30
40
50
60
70
80
90

100

Proposed System Existing  System



ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e–ISSN: 2067–3809] 
TOME XIII [2020] | FASCICULE 3 [July – September] 

46 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara  
http://acta.fih.upt.ro/ 

the extent of the fault prompting inputs. The previous 
tools, for example, Apollo, randomized systems, 
identify the faults from static applications of PHP. 
However, our tool detects static, dynamic bugs as well 
as HTML errors present in web applications 
implemented in PHP as well as C#.net.  
The proposed tool detects HTML errors and execution 
errors in less time as compared to the existing tools. 
The accuracy of error detection of this tool is better 
than that of the existing tool. Hence, the precision of 
the web applications has improved by a proposed 
system.  
The proposed tool is to act as a testing tool to find 
faults from all LOC (line-of-code) in web 
applications. More advanced tools find faults during 
rendering process, so line coverage is less but this tool 
is act as testing tool, so line coverage is more compare 
to other tools. 
References 
[1] Godefroid, Klarlund N, and Sen K, “DART: Directed 

Automated Random Testing,” Proc. ACM SIGPLAN 
Conf. Programming Language Design and 
Implementation, pp. 213-223, 2005. 

[2] Sen K, Marinov D, and Agha G, “CUTE: A Concolic 
Unit Testing Engine for C,” Proc. ACM SIGSOFT Int’l 
Symp. Foundations of Software Eng., pp. 263-272, 
2005. 

[3] Cadar C, Ganesh V, Pawlowski P M, Dill D L, and 
Engler D.R., “EXE: Automatically Generating Input of 
Death,” Proc. Conf. Computer and Comm. Security, 
pp. 322-335, 2006. 

[4] Artzi S, Kie zun A, Dolby J, Tip F, Dig D, Paradkar, 
“Finding Bugs in Web Applications Using Dynamic 
Test Generation and Explicit-State Model Checking” 
IEEE Trans. on Software Engg. Vol. 36, NO. 4, 
July/Aug 2010 

[5] Shinde S K, Joshi S D.,Kaushik D K., “Fault-Tolerant 
System for Dynamic Web Applications”, IJEDR, 
volume 3 issue 1, (2015), pp. 489-494. 

[6] Holzmann G J, “The Model Checker SPIN,” Software 
Eng., vol. 23, no. 5, pp. 279-295, 1997. 

[7] Benedikt M, Freire J, and Godefroid P, "VeriWeb: 
Automatically Testing Dynamic Web Sites," Proc. Intel 
Conf. World Wide Web, 2002.  

[8] Clause J and Orso A, "Penumbra: Automatically 
Identifying Failure-Relevant Inputs Using Dynamic 
Tainting," Proc. Intel Symp. Software Testing and 
Analysis, 2009. 

[9] Godefroid P, Levin M Y, and Molnar D, “Automated 
Whitebox Fuzz Testing,” Proc. Network Distributed 
Security Symp., pp. 151-166, 2008 

[10] Cleve H and Zeller A, "Locating Causes of Program 
Failures," Proc. Intel Conf. Software Eng., pp. 342-
351, 2005. 

[11] Misherghi G and Su Z, "HDD: Hierarchical Delta 
Debugging," Proc. Intel Conf. Software Eng., pp. 142-
151, 2006.  

[12] Csallner C, Tillmann N, and Smaragdakis Y, "DySy: 
Dynamic Symbolic Execution for Invariant Inference," 
Proc. Intel Conf. Software Eng., pp. 281-290, 2008. 

[13] Zoufaly F, "Web Standards and Search Engine 
Optimization (SEO)—Does Google Care About the 
Quality of Your Markup?" 2008. 

[14] Shinde S K, Joshi S D, “Iterative Code Reviews System 
For Detecting And Correcting Faults From Software 
Code Documents” IJARET Volume 5, Issue 11, 
November (2014), pp. 61-67 

[15] Minamide Y, "Static Approximation of Dynamically 
Generated Web Pages," Proc. Intel Conf. World Wide 
Web, 2005. 

[16] Shinde S K, Joshi S D, “Schema Inference & Data 
Extraction from Templatized Web Pages”, IEEE, 
International conference on Pervasive Computing 
(ICPC) 2015, Sinhgad College of Engineering, Pune, 
10.1109/PERVASIVE.2015.7087084, Jan.2015 pp. 
1-6 

[17] Shinde S K, Joshi S D, “Web Based Requirement 
Elicitation Tool” (IJARCET) Volume 4 Issue 9, 
September 2015 pp. 3719-3722 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering  

ISSN: 2067-3809 
copyright © University POLITEHNICA Timisoara, 

Faculty of Engineering Hunedoara, 
5, Revolutiei, 331128, Hunedoara, ROMANIA 

http://acta.fih.upt.ro  


