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Abstract: The main objective of this paper is to determine the thermal stresses and displacements in multilayered curved 
beams subjected to thermal loading and concentrated moment. An analytical solution is presented to tackle this 
thermoelastic problem of multilayered circular arc with constant radius. The model can be modified to determine the 
stresses within radially graded curved beams. The developed plane stress method is compared to result coming from 
finite element simulations. Our main focus is to determine the analytical solution for the stresses and displacement within 
the beam which is subjected to constant temperature field and concentrated moment at the end of the beam. 
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INTRODUCTION 
Curved beams are frequently used components in 
frame structures. Recent years a lot of studies have 
been performed on the mechanics of multilayered and 
functionally graded beams from different aspects. A 
lot of books deal with the stress analysis of beams, 
such as [1-7]. Bimetal components are one of the 
applications for multilayered beams. Several works 
have dealt with the mechanics of bimetallic strips 
which consist of two different components [8–12] 
although curved beams were not considered.  
Papers such as [13-16] deal with the stability problem 
of curved beams subjected to only mechanical 
loading. These articles present an analytical method to 
the non-linear stability investigation of curved beams. 
The model can be used not only for homogeneous 
materials but also for functionally graded 
distributions. In [15] the mechanical load is a 
concentrated radial force at the crown point, while in 
[16], it is exerted in the small vicinity of the crown. 
Furthermore, in [13] the application point can be 
arbitrary along the centroidal axis. There are several 
papers (e.g. [17-19]) where multilayered structures 
were analysed and used to approximate simple 
radially graded components, such as disks or 
spherical bodies. 
In paper [18] an analytical solution was developed for 
spheres using Boussinesq displacement potentials, in 
which the functions of the material properties – 
except the Poisson’s ratio - are power law functions, 
in paper [19] the problem is solved as the 
superposition of the simpler subproblem. Then these 
multilayered methods were used to calculate stresses 
in radially graded spheres.  
Pydah and Sabale [20] solved the flexure problem of 
bi-directional functionally graded circular beams 
subjected to various tip loads. Eslami et. al [21] used a 
two-step perturbation technique to present the 
solution of functionally graded shallow tube subjected 
to lateral pressure and temperature field, where the 
properties of the arch were distributed through the 
radial direction using a specific power law function.  

In paper [22] a method is presented to calculate the 
stresses and displacements in bimetal curved beam 
subjected to only constant temperature field based on 
strength of materials and plane stress theories. In the 
work [23] the solution of a radially graded circular 
curved beam is presented, where the modulus of 
elasticity varies according to a power law function. 
Ecsedi and Baksa [24] presented a method to calculate 
the stresses in circular polar orthotropic beams 
subjected to radial loading. 
A multilayered curved beam is considered. The 
number of layers is denoted by n, the homogeneous 
layers are perfectly bonded. A cylindrical coordinate 
system will be used, the sketch of the problem - for 
four layers, as an example - can be seen in Figure 1. 
Our main focus is to determine the analytical solution 
for the stresses and displacement within the beam 
which is subjected to constant temperature field (T) 
and concentrated moment at the end of the beam. The 
internal radius of the i-th layer is denoted by Ri, the 
outer radius is Ri+1. The symmetry plane of the 
problem is the z=0 plane. 

 
Figure 1. The sketch of the problem  

in case of 4 layers 
GOVERNING EQUATIONS 
In the basis of the plane stress model, the boundary 
conditions of the considered problem can be 
expressed as 
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furthermore the following weak form equations will 
be satisfied:  
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In the previous equations σr and σφ, are the radial and 
tangential normal stresses. According to the Euler-
Bernoulli beam theory, the displacement field can be 
given as:  
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where u and v denote the radial and tangential 
displacement components. From the kinematic 
boundary conditions the unknown f and D constants 
can be determined. For example we can use: 
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The kinematic equations yield 
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where εri and εφi denote the normal strain coordinates 
of the strain tensor in the i-th layer. The stress-strain 
relation for the i-th layer can be expressed as 
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The combination of Eqs. (8) and (9) with the 
compatibility condition leads to 
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From the equilibrium equation we get 
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The combination of the previous equations yields the 
following differential equation for the different layers 
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The solution of the differential equation can be 
expressed as 
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where the number of unknown constants is 2n+1. 
The boundary and fitting conditions of the 
multilayered beam (with thickness b) are: 
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With system of equations (14), (15) we can calculate 
the unknown constants for the different layers. The 
stress distribution does not depend on the angular 
coordinate. 
This method can be modified to calculate stresses 
within radially graded beams subjected to constant 
temperature and concentrated moment. In this case 
we need n homogeneous layers and we have to 
discretize the values of the material properties for the 
different layers. One technique is to use the value of 
the function of the material parameters at the middle 
of the layer Rmi [19] 
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The more layers we use the more accurate the solution 
is. 
NUMERICAL EXAMPLES 
In our first numerical examples the following 
numerical data will be used: 
 

1m1R = ,  1.05m,2R =  1.09m,3R =  1.14m,4R =
 69 GPa,1E =  200 GPa,2E = 3  69 GPa,E =  
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 0.33,1ν =  0.3,2ν =  0.33,3ν = 5 2.2 1
K

 ,101α −= ⋅

5 1.1 1
K

 ,102α −= ⋅ 5 2.2 1
K

 ,103α −= ⋅  150°C,T =

290°.β =  
The presented method is compared to results coming 
from finite element simulations. We used Maple and 
Abaqus CAE to carry out the calculations. The 
deformed mesh of the first problem can be seen in 
Figure 2. Quadratic coupled temperature-
displacement elements were used to formulate the 
steady-state plane stress model [33]. 

 
Figure 2. The finite element model of the first problem 

with the von Mises stress 
In Figure 2 we can see that the stress distribution does 
not depend on the angular coordinate except at the 
ends of the beam. The stress distributions are plotted 
in Figure 3 in case of pure constant temperature 
loading. 
In the next case we apply an additional concentrated 
moment (5 kNm) at the free end of the curved beam. 
The results can be seen in Figure 4. 
In the second numerical example the following 
numerical data will be considered: 
 

m1R = 0.03 ,  0.035m,2R =  0.04m,3R =
 0.045m,4R = 5  0.05m,R =  117 GPa,1E =

2  200 GPa,E = 3  69 GPa,E = 4  117 GPa,E =
 0.355,1ν =  0.3,2ν =  0.33,3ν = 4  0.355,ν =

5 1.62 10 1 ,
K1α −= ⋅ 5 1.1 1

K
 ,102α −= ⋅

5 2.2 1
K

 ,103α −= ⋅ 5
4 , 1.62 

K
10 1α −= ⋅ 150°C,T =

120°.β =  

 

 
Figure 3. The normal stresses of the first problem 

subjected to constant temperature field 
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Figure 4. The normal stress distribution of the first 

problem with constant temperature and concentrated 
moment 

The number of layers is four, the geometry is more 
strip-like and the mesh of the problem is shown in 
Figure 5. 

 
Figure 5. The mesh of the second problem with the von 

Mises stress distribution 
Figure 6 shows the normal stress distribution of the 
curved beam subjected to constant temperature field 
while in Figure 7 we can see the effect of an additional 
moment M=5 kNm on the stress distribution.  
The results are in good agreement and we verified that 
the stress field of these multilayered curved beams 
with constant curvature depends only on the radial 
coordinate except in the vicinity of the end cross 
sections. 

 
 
 
 
 

 

 

 
Figure 6. The normal stresses of the first problem with 

constant temperature field 
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Figure 7. The normal stress distributions of the second 
problem with constant temperature and concentrated 

moment 
SUMMARY 
An analytical method was presented to determine the 
stresses and displacement in multilayered curved 
beam subjected to specific thermal and mechanical 
loads. The curvature of the beam was constant.  
The developed method is based on the elasticity 
equations of plane stress state and Euler Bernoulli 
beam theory.  
A method is presented to tackle the problem of radially 
graded beams subjected to constant temperature and 
concentrated moment.  
The results were compared to solutions coming from 
finite element simulations. 
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