

^{1.} Cătălin-Ioan ICHIM-BURLACU, ^{1.} Cezara-Liliana RAT

MODELLING THE HYDROKINETIC TURBINE

^{1.} Politehnica University of Timisoara, Faculty of Engineering, Hunedoara, ROMANIA

Abstract: Hydrokinetic turbines are an emerging type of hydroenergy converters used for small rivers and streams usually in run-of-the-river installations. Run-of-the-river installations are micro-hydropower plants built without significantly altering the natural flow of the river (no dams, no reservoir). They represents one of the most environment friendly hydropower plants available today. In order for these turbines to be deemed a cost effective solution, extensive research is required. To this end, a mathematical model of the hydrokinetic turbine is required. The aim of this paper is to determine a model of a hydrokinetic turbine using polynomial regression. A model is necessary for simulating the energy conversion system which is, in turn, necessary for designing the control of the system, the protection, etc. The power coefficient on which the model is based describes the efficiency of the turbine in extracting power from the water. It is highly dependent on the characteristics of the turbine: its type, shape, dimensions, material, etc. However, the power coefficient is seldom provided by literature. Therefore, being able to obtain an estimative relationship based on experimental data is a necessity. Since hydrokinetic turbines have a very different, less controllable installation compared cu conventional hydropower plants (zero head with no reservoir), they are modelled in a completely different fashion.

Keywords: regression, hydrokinetic turbine, power coefficient

INTRODUCTION

The current global energy crisis has forced researchers to presence of floating and submerged debris, reduced find new and innovative ways of generating energy, pushing the boundaries of science and technology. The damaging during flash floods [1,3]. main challenge is not only extracting more energy, but In order for these turbines to be deemed a cost effective doing it in a more environmentally friendly way. This is a solution, extensive research is required. To this end, a serious problem for large power plants, which can mathematical model of the hydrokinetic turbine is potentially generate more power, but at the cost of a very high carbon footprint. One solution could be the use of WATER TURBINE MODELING small-scale renewable energy sources, such as microhydropower plants. These small sized installations, generating between 5 and 100 kW, which can be installed hydropower plants (zero head with no reservoir), they are to power remote areas or standalone loads, harnessing modelled in a completely different fashion [4]. Given that energy from nearby rivers or streams. Compared to other renewable energy sources, micro-hydropower plants have turbines, they are modelled based on the same principles. certain advantages such as higher efficiency and slower Wind turbines utilize the power of the wind, transforming change rates. One such hydropower source is the it into rotational power. This is then changed into hydrokinetic turbine [1,2].

Hydrokinetic turbines are an emerging type hydroenergy converters used for small rivers and streams there may be other components between the generator usually in run-of-the-river installations. Run-of-the-river installations are micro-hydropower plants built without (voltage level, frequency, etc.) are being met [5]. The significantly altering the natural flow of the river (no dams, no reservoir). They represents one of the most well as the model for the interaction between the environment friendly hydropower plants available today components are determined based on the transformation 1,3.

Their advantages compared to conventional hydropower plants are lower costs, scalability, simpler mechanical structure and the ability to generate energy near the place of consumption as well as a much smaller effect on the

ecosystem. Their disadvantages are the frequent adaptability to consumer variations and possible

required.

Since hydrokinetic turbines have a very different, less controllable installation compared cu conventional their structure and functioning are similar to those of wind electrical power with the help of a generator and, usually, of a gearbox. Electrical power is used to supply a load, but and the load that ensure that its particular requirements models of the individual components of the system as of the power. Therefore the bare minimum models required to simulate a wind turbine system are [6]:

> the aerodynamic model which represents the transformation from wind power to rotational power and pertains to the turbine itself;

ACTA TECHNICA CORVINIENSIS – BULLETIN OF ENGINEERING TOME XVI [2023] | FASCICULE 3 [JULY - SEPTEMBER]

- the mechanical model which represents the interaction between the turbine and the generator with/without a gearbox;
- and the generator model which represents the transformation from rotational power to electrical power and pertains to the generator.

In this paper, the authors are only concerned with modeling the turbine, hence the only model discussed here will be the aerodynamic model which, considering the fact that the turbine is a water turbine, will be called the hydrodynamic model. The aim of this paper is to provide a relatively low complexity hydrodynamic model for a constant-pitch hydrokinetic turbine.

THE HYDRODYNAMIC MODEL

Hydropower depends on the speed and flow rate of the water flowing through the turbine. The theoretical maximum power available from such a turbine is equal to the kinetic energy $(1/_2 \text{ mv}^2)$ of the water passing through the turbine, which can be expressed as [1, 7]:

$$P_{h}=0.5\rho Q v^{2}$$
(1)

where: p is the density of water and v is the speed of water. Q is the flow rate of water, being described by the following relationship [1, 7]:

$$Q = Av$$
 (2)

where A is the cross-sectional area of the turbine. The hydraulic power can be derived from relationships 1 and 2 as:

$$P_{\rm h} = 0.5 \rho {\rm Av}^3$$
 (3)

The power that can be extracted by a hydrokinetic turbine depends on the efficiency of the turbine, as described by its power coefficient C_P [8, 9]. C_P is defined as the ratio of the actual power delivered by the turbine (P_{ht}) to the theoretically available power of the water (P_h) [1,7]:

$$C_{p} = \frac{P_{ht}}{P_{h}}$$
(4)

turbine can be expressed as:

$$P_{ht} = 0.5 C_p \rho A v^3$$
(5)

Since the river speed varies slowly over time, the most commonly used hydrokinetic turbines are fixed-pitch: $C_{P}(\lambda)$, where λ is the speed ratio defined as [1, 7]:

$$\lambda = \omega_r R/v$$
 (6)

where ω_r is the rotational speed.

THE POWER COEFFICIENT CP

Relationships for $C_{P}(\lambda)$ are seldom found in literature and the given ones [4, 5, 7] are highly dependent on the type of turbine used (Figure 1), as well as its shape, dimensions, material, etc. One solution is to find the relationship using data from an existing turbine through polynomial regression. This method will lead to finding a polynomial function $C_{Px}(\lambda)$, where x is the order of the polynomial, using a set of discrete experimentally determined values. This method is demonstrated using data provided by [1].

Figure 1. Power coefficient for different types of turbines [10]

Multiple polynomial expressions with orders between 5 and 10 have been thus obtained. Relationships of lower orders were not given due to low precision. These relationships can all be used to simulate the turbine depending on the accuracy required by the simulation. In order to find the best fit for the data given, the values of the standard deviation and the Pearson correlation coefficient for each expression must be taken into consideration. These quality indicators, along with the coefficients of the polynomial expressions are given in Table 1.

The most accurate approximation (minimal standard deviation and a correlation coefficient very close to one) is that obtained by a polynomial expression of the tenth order of the form:

$$C_{P_{10}}(\lambda) = c_{10}\lambda^{10} + c_9\lambda^9 + c_8\lambda^8 + c_7\lambda^7 + c_6\lambda^6 + c_5\lambda^5 + c_4\lambda^4 + c_3\lambda^3 + c_5\lambda^2 + c_1\lambda + c_0$$
(7)

The graphical representation of the variation of the power Based on relationships (3, 4), the output power of the coefficient C_p based on the experimental data, as well as of the estimated power coefficient C_{P10} according to the tip-speed-ratio λ are shown in Figure 2.

Figure 2. Experimental data and tenth order polynomial regression C_{P10} as a function of λ

ACTA TECHNICA CORVINIENSIS – BULLETIN OF ENGINEERING TOME XVI [2023] | FASCICULE 3 [JULY – SEPTEMBER]

Table 1. The values of the coefficients and of the quality indicators		
Order	Coefficients	Quality indicators
5	$c_5 = -8.54215 \cdot 10^{-5}$, $c_4 = 0.00349077$, $c_3 = -0.051324348$, $c_2 = 0.296784331$, $c_1 = -0.420405312$, $c_0 = 0.127342352$	RMSE: 0.162156199 Correlation coefficient: 0.998637
6	$c_6 = -2.52329 \cdot 10^{-6}, c_5 = 1.52576 \cdot 10^{-5}, c_4 = 0.001966774, c_3 = -0.040467936, c_2 = 0.260337255, c_1 = -0.370811775, c_0 = 0.11044871.$	RMSE: 0.158873265 Correlation coefficient: 0.998691666
7	$c_7 = 3.04083 \cdot 10^{-6}$, $c_6 = -0.000144074$, $c_5 = 0.002625396$, $c_4 = -0.022223132$, $c_3 = 0.077351441$, $c_2 = -0.025770853$, $c_1 = -0.079832401$, $c_0 = 0.034260413$	RMSE: 0.092381068 Correlation coefficient: 0.999557824
8	$c_8 = -6.07676 \cdot 10^{-7}, c_7 = 3.53692 \cdot 10^{-5},$ $c_6 = -0.000847159, c_5 = 0.010663518,$ $c_4 = -0.073908635, c_3 = 0.262562848,$ $c_2 = -0.368330677, c_1 = 0.191720015,$ $c_0 = -0.022581018$	RMSE: 0.03559426 Correlation coefficient: 0.999934369
9	$c_9 = 4.77701 \cdot 10^{-8}, c_8 = -3.46672 \cdot 10^{-6}, c_7 = 0.000107019, c_6 = -0.001822371, c_5 = 0.018481979, c_4 = -0.111348347, c_3 = 0.366152862, c_2 = -0.519797748, c_1 = 0.288354707, c_0 = -0.039258557$	RMSE: 0.02790428 Correlation coefficient: 0.999959665
10	$c_{10} = 8.45877 \cdot 10^{-9}, c_9 = -5.14738 \cdot 10^{-7}, c_8 = 1.24952 \cdot 10^{-5}, c_7 = -0.000145141, c_6 = 0.000603993, c_5 = 0.003862527, c_4 = -0.05674158, c_3 = 0.245383463, c_2 = -0.376175568, c_1 = 0.212710609, c_0 = -0.028223172$	RMSE: 0.024747898 Correlation coefficient: 0.999968274

CONCLUSIONS

This paper provides a simple yet accurate method of determining the model of a hydrokinetic turbine. The model can be used to simulate the turbine as well as to improve its features. It can also be used to design the energy conversion system centered on the turbine to ensure compatibility between the components. It can also be used to design the control system that ensures the maximization of the power obtained from the water by the turbine.

The functions obtained in this paper are polynomial functions, but other types of functions such as power, exponential, moving average, or even custom functions can be used according to the level of complexity/simplicity and performance required.

References

 Rat, C. L.; Prostean, O.; Filip, I.: Hardware-in-the-Loop emulator for a hydrokinetic turbine, IOP Conference Series: Materials Science and Engineering, 294(1), IOP Publishing, 2018.

- [2] Paish, O.: Micro-hydropower: status and prospects, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216(1), 31-40, 2002.
- [3] Rat, C.; Prostean, O.; Filip, I: Power Control of a Variable-Pitch Hydrokinetic Turbine, 13th International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 167–172, IEEE, 2019.
- [4] Chica, E.; Perez, F.; Rubio-Clemente, A.; Agudelo, S.: Design of a hydrokinetic turbine, WIT Transactions on Ecology and the Environment, 195, 137-148, 2015.
- [5] Guney, M. S.: Evaluation and measures to increase performance coefficient of hydrokinetic turbines, Renewable and Sustainable Energy Reviews, 15(8), 3669–3675, 2011.
- [6] Vasar, C.; Rat, C. L.; Prostean, O.: Experimental model of a wind energy conversion system, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 294(1), 012081, 2018.
- [7] Talukdar, P. K.; Sardar, A.; Kulkarni, V.; Saha, U. K.: Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations, Energy Conversion and Management, 158, 36–49, 2018.
- [8] Mangold, E.: Hydrokinetic Power: An Analysis of Its Performance and Potential in the Roza and Kittitas Canals, The Evergreen State College, 2012.
- [9] Lago, L. I.; Ponta, F. L.; Chen, L.: Advances and trends in hydrokinetic turbine systems." Energy for Sustainable Development, 14(4), 287–296, 2010.
- [10] Kumara, E. A. D.; Hettiarachchi, N.; Jayathilake, R.: Overview of the vertical axis wind turbines, Int. J. Sci. Res. Innov. Technol, 4, 56-67, 2017.

ISSN: 2067-3809 copyright © University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara, 5, Revolutiei, 331128, Hunedoara, ROMANIA http://acta.fih.upt.ro

39|FASCICULE 3