

1. IONEL MUSCALAGIU, 2. DIANA MUSCALAGIU,

3. TEODORA PETRAS, 4. MANUELA PĂNOIU

DISCSP-NETLOGO-EDUCATIONAL SOFTWARE MEANT
FOR THE IMPLEMENTATION AND EVALUATION OF THE

ASYNCHRONOUS SEARCH TECHNIQUES IN NETLOGO

 Abstract:

The wide spreading of computer networks and of the Internet will result in the necessity of
developing distributed software, which is supposed to work under these media, and to turn into
account the advantages of a distributed and concurrent environment. The implementation of such
techniques can be done in any programming language allowing a distributed programming, such as
Java, by means of RMI. Nevertheless, for the study of such techniques, for the analysis of their
completeness and for their evaluation, it is easier and more efficient to implement the techniques
under certain distributed media, which offer various facilities, such as NetLogo.
In this article there is proposed a general implementation and evaluation model in NetLogo for the
asynchronous techniques. This model, we believe, will allow the use of the NetLogo environment as a
basic simulator for the study of asynchronous search techniques. This model can also be used for
building educational software which can be used when studying the asynchronous search techniques
with agents.

 Keywords:

artificial intelligence, distributed programming, constraints, agents

 INTRODUCTION

The adjustment of the software technologies to
the distributed equipment represents an
important challenge for the next years. The wide
spreading of computer networks and of the
Internet will result in the necessity of developing
distributed software, which is supposed to work
under these media, and to turn into account the
advantages of a distributed and concurrent
environment.
The constraint programming is a model of the
software technologies, used to describe and
solve large classes of problems as, for instance,
searching problems, combinatorial problems,
planning problems, etc. A large variety of
problems in the A.I field and other domains

specific to computer sciences could be regarded
as a special case of constraint programming.
Lately, the A.I community showed a greater
interest towards the distributed problems that
are solvable through modeling by constraints
and agents. The idea of sharing various parts of
the problem between agents that act
independently and that collaborate between
them using messages, in the prospective of
gaining the solution, proved itself useful, as it
conducted to obtaining a new modeling type
called Distributed Constraint Satisfaction
Problem(DCSP) [3,4].
There exist complete asynchronous searching
techniques for solving the DCSP, such as the ABT
(Asynchronous Backtracking) and DisDB

© copyright FACULTY of ENGINEERING – HUNEDOARA, ROMANIA 13

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

(Distributed Dynamic Backtracking) [1,3,4].
There is also the AWCS (Asynchronous Weak-
Commitment Search) [3,4] algorithm which
records all the nogood values. The ABT
algorithm has also been generalized by
presenting a unifying framework, called ABT
kernel [1]. From this kernel two major
techniques ABT and DisDB can be obtained. The
implementation of asynchronous search
techniques based on distributed constraints can
be done in any programming language allowing
a distributed programming, such as Java, C,
C++ or other. Nevertheless, for the study of
such techniques, for their analysis and
evaluation, it is easier and more efficient to
implement the techniques under certain
distributed environment, which offer various
facilities, such as NetLogo [8], [5,6,7].
NetLogo, is a programmable modelling
environment, which canl be used for simulating
certain natural and social phenomena. It offers a
collection of complex modelling systems,
developed in time. The models could give
instructions to hundreds or thousands of
independent agents which could all operate in
parallel. NetLogo is the next generation in a
series of modeling languages with agents that
began with StarLogo [8]. It is an environment
written entirely in Java, therefore it can be
installed and activated on most of the important
platforms (Windows, Unix) .
The aim of this article is to introduce an as
general as possible model of implementation
and evaluation for the asynchronous search
techniques, in two possible cases: synchronous
and asynchronous. This model can be used in
the study of agents behavior in several
situations, like the priority order of the agents,
the synchronous and asynchronous case,
leading, therefore, to identifying possible
enhancements of the performances of
asynchronous search techniques. This model
can also be used in creating some educational
software to be used in the study of
asynchronous search techniques with agents by
the students. For this purpose we have chosen
the NetLogo environment, which is a
programmable environment [8].
We will see the way one can simulate agents,
how constraints can be implemented, how
various measurement units for asynchronous
techniques in the ABT and AWCS family can be
implemented. Unfortunately, there is no

distributed environment dedicated to modeling
with distributed constraints, all the existent
media are general ones, with more general
targets. The implementation of agents and
constraints implies a certain calculation effort,
bigger or smaller, according to the performances
of the given environment. The use of this
support for educational software can ease the
actual implementation of asynchronous
techniques. This educational software ca be
approached by students on the site [7]

 THE IMPLEMENTATION OF APPLICATIONS

WITH AGENTS IN NETLOGO
 THE NETLOGO OBJECTS

The NetLogo world is made of agents. Each
agent carries out a task, all the agents execute
simultaneously and concurrently. The NetLogo
language allows three types of agents: turtles,
patches and the observer. The turtle type objects
are agents that can move on in the NetLogo
world, which is bidimensional and is divided in a
grid of patches. Each patch is a square piece that
represents the support on which turtle objects
can move. The observer doesn't have a fixed
location, it can be imagined as being situated
above the world of turtles and patches objects.
The observer can be regarded as a system agent
that can initiate various operations for the other
agents. NetLogo uses commands and reporters
to tell the agents what to do (the commands and
the reporters are NetLogo primitives). The
commands are actions for the agents, but the
reporters return certain values.
NetLogo allows the defining of different "types"
of turtles, called breeds. Once a breed has been
defined, we ca establish a different behavior for
it. Those objects are used for simulating various
objects existent in DCSP problems. For example,
the agents from the n queens problem can be
defined using breed type objects (a construction
of type breeds [queens]). That thing allows the
fixing of a special behavior for each agent-
queen. When breed type objects are defined,
automatically there is created an agentset for
each breed.
A very important problem is related to the way
of execution of an agent's attached procedures,
agent simulated using breed type objects. The
DCSP applications require the simultaneous and
asynchronous execution of the code attached to
each agent. That thing is possible in NetLogo

2009/Fascicule 1/January‐March/Tome II 14

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

because the commands are executed
asynchronously, each object of the "turtle" type
or "patch" executes its list of commands as soon
as possible. There are two ways of performing
each agent's commands. The first one consists in
"aligning" the commands executed by each
turtle, through placing all the commands in the
ask block. That way, the executed steps won't be
synchronized. In exchange, using an ask
command for each operation, a synchronization
of all the operations performed by the agents
will be obtained, each turtle will wait until the
other turtle objects will finish their
computations.

 MODELLING AND IMPLEMENTING THE PROCESS OF
THE AGENTS' EXECUTION

In this paragraph there is presented a solution
of modelling and implementation for the
existing agents' process of execution in the case
of the asynchronous search techniques. That
modelling, applying a technique for detecting
the algorithms' termination, allows us to obtain
two multi-agent systems that can be applied for
implementing and evaluating the most
outstanding asynchronous search techniques.
That modelling ca be used also for
implementing most of the asynchronous search
techniques, such as those from the AWCS family
[3,4], ABT family [1], DisDB [1]. The modelling
proposed in this paragraph allows the obtaining
of implementations for asynchronous search
techniques derived versions in which various
situations that exist in reality are simulated:
delays in supplying the messages, message
management, etc. Implementation examples for
those techniques can be found on the NetLogo
site ([6] and in [5, 7]. Any implementation for the
asynchronous search techniques supposes the
following two steps:

 programming the agents such as they run
concurrently

 designing the user interface.
The modelling of the agents' execution process
will be structured on two levels, corresponding
to the two stages of implementation. The
definition of the way in which asynchronous
techniques will be programmed such that the
agents to run concurrently and asynchronous
will be the internal level of the model. The
second level refers to the way of representing
the NetLogo application, and is the exterior

level. The first aspect will be treated and
represented using turtle type objects. The second
aspect (that is connected with the problem to be
solved) refers to the way of interacting with the
user, the user interface. Regarding that aspect,
NetLogo offers patches type objects de tip and
various graphical controls. Anyway, patches type
objects will allow the simulation of the
application's interface.

 AGENTS' SIMULATION AND INITIALIZATION

First of all, the agents are represented by the
breed type objects (as we saw in the previous
paragraph, those are of the turtles type). In there
fig. 1 is presented the way the agents are defined
together with the global data structures
proprietary to the agents.

breeds [agents]
globals [variables that simulate the memory shared
by all the agents]
agent-own [message-queue current-view nogoods
messages-received_ok messages-received_nogood]
;message-queue contains the received messages.
;current-view is a list indexed on the agent’s number,
of the form [v0 v1 v2...], vi = -1 if we don’t know the
value o that agent.
;nogoods is the list of inconsistent positions [0 1 1 0 ...
] where 0 is a good position, and 1 is inconsistent.
;messages-received_ok and messages-
received_nogood are variables that count the number
of ok and nogood messages received by an agent.

Figure 1. Agents’ definition in the case of the
asynchronous search techniques

The initialization of the agents supposes building
the agents and initialization of the necessary
data structures for the agents' operation. For
initialization there is proposed an initialization
procedure for each agent, procedure presented
in figure 2 (the procedure will be called setup).

to setup-agenţii // the agents defined with the breeds
[agenţi] are used
; the num-agents agents are created and are
initialized
 create-custom-agenţi num-agents [
 set messages-received_ok 0
 set current-view get-list num-agents -1
 set nogoods get-list num-agents 0
 set message-queue []
 …
]
end
Figure 2. The initialization procedure for each agent-

setup

2009/Fascicule 1/January‐March/Tome II 15

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

Typically the num-agents required for the
running of the asynchronous search technique
are built and the most important data structures
are initialized.

 REPRESENTATION AND MANIPULATION OF THE
MESSAGES

Any asynchronous search technique is based on
the use by the agents of some messages for
communicating various information needed for
obtaining the solution. The manipulation of the
messages supposes first of all message
representation. This thing can be achieved in
Netlogo by using some indexed lists. To
represent complex messages that contain many
information, Netlogo allows the use of lists of
lists. The way of representation of the main
messages encountered at the asynchronous
search techniques is presented as follows:

 (list "ok" agent value agent_costs) –
messages of the ok or info type;

 (list "nogood" agent current-view
agent_costs) - messages of the nogood or
back type;

 (list "addl" agent1 agent2 agent_costs)
 (list "removel" agent1 agent2 agent_costs)

 DEFINITION AND REPRESENTATION OF THE
INTERFACE

As concerning the interface part, it can be used
for the graphical representation of the DCSP
problem's objects (queens or nodes) of the patch
type. It is recommended to create an
initialization procedure for the display surface
where the agents' values will be displayed.
For the case of the graph coloring problem, the
representation of nodes and links is done in the
same way [5,6,7]. The two initialization
procedures will be attached (using a setup
procedure) to a start button of the application,
as in the sequence in figure 3.

to setup
 ca
 setup-patches
 setup-nodes
 ask nodes [procedura_iniţializare]
end

Figure 3. Setup procedure of the NetLogo
application

 IMPLEMENTATION AND EVALUATION
METHODOLOGY FOR THE ASYNCHRONOUS
TECHNIQUES

In this paragraph there is presented a
methodology of implementation for the
asynchronous search techniques in NetLogo,
using the model presented in the previous
paragraphs 2. That methodology supposes the
identification of the application's objects,
building the agents and of the working surface
for the application. There are also built the
communication channels between agents,
routines for message handling and the main
program of the application. The methodology
contains more elements specific to NetLogo
necessary for finalizing the implementation of
the asynchronous search techniques. Any
implementation based on the presented model,
will require the following of the next steps.
P1. Defining the DCSP application’s objects.
Starting from the type of problem that is
implemented, it will be defined the objects of the
DCSP application. In figure 4 is presented a
solution of agents modelling and also for the
working surface of th eapplication. As in the
modeling examples are proposed breeds
[queens] (for modeling the agents associated to
the queens from the problem of the n queens) or
breeds [vertices] (for modeling the agents
associated to each node from the problem of
graph coloring).

Figure 4. Identification of the objects of the DCSP
application

DCSP agents

Turtles objects of
the breeds type

 The working surface of
the DCSP application

Obiects of the
patches type

In exchange, to model the surface of the
application are used objects of the patches type.
Depending on the significance of those agents,
they are represented on the Netlogo surface. In
figure 5 are presented two ways in NetLogo for
representing the agents of the queens type,
respectively noduri.

2009/Fascicule 1/January‐March/Tome II 16

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

2009/Fascicule 1/January‐March/Tome II 17

(a) queens

(b) nodes

Figure 5. Examples of reprezentation of the agents on
the NetLogo surface

P2. Message handling. The FIFO type message
chanel.
Any agent keeps its working context at least as
two proprietary structures: current_view and its
nogood list. That context is used to take
decisions, inclusively for building messages. For
the proposed model, the data structures that
store the working context of each agent can be
simulated with lists. A representation solution is
presented in figure 6 (a)

The working context

NetLogo indexed
lists

Nogood list
[n1,n2…],
ni ∈{0,1}

current_view
[v1,v2…], vi ∈Di

 (a)

Messages

NetLogo indexed
lists

list "ok" agent
value
costuri_agent

list "nogood" agent
current-view
costuri_agent

(b)

FIFO messages
channel

Netlogo list of the
queue type

Message-queue

Lput msg
message-queue

Set msg first
message-queue

(c
Figure 6. The necessary structures for message

handling)

to receive-message
[msg]
 without-interruption
[
 set message-queue
lput msg message-
queue]

to-report retrieve-
message
 without-interruption [
 set msg first message-
queue
 set message-queue
butfirst message-queue]
 report msg
end to handle-message

 if (empty?
message-queue)
[stop]
 set msg retrieve-
message
 if (first msg =
"ok")[

 ok msg]
Figure 7. Message handling

Message handlinf supposes first of all message
representation. In figure 6.(b) is presented the
way of representation of the main messages
found at the asynchronous techniques.
Simulareation of message queues for each agent
can be done using Netlogo lists, for which are

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

2009/Fascicule 1/January‐March/Tome II 18

defined routines of handling corresponding to
FIFO principles (figure 6.(c)). These structures
keep the messages received by each agent.
Starting from NetLogo elements presented in
figure 6, we can build three procedures for
handling messages from the message queue,
routines presented in figure 7. The first receive-
message routine is used for receiving a new
mesaage, the second routine retrieve-message
has as its purpose the extraction of a message
from the waiting queue, being called in the
message treatment routine. The last routine
handle-message identifies the message type,
calling the appropriate message handling
routine.

Running the DCSP application

Graphical object of the button
type having setted the forever

property

P3. Application initialization an of each
agent. “The main program” for application
The initialization of the application supposes the
building of agents and of the working surface for
them. When the agents are built the required
initializations are also done. Usually, is initialized
the working context of the agentul (current-
view), the message queues, the variables that
count the effort carried out by the agent. In
figure 8 are presented the two routines of
application initialization and of agents
initialization.

to update
 set no-more-messages true
 ask agents [
 if (not empty? message-queue)[
 set no-more-messages false]]
 if (no-more-messages) [stop] ; the execution of that agent is stopped, it has no more
messages
 ask agents [handle-message]
; message handling by the agent
 ask agents [plot messages-received_nogood]
 …

Agents
initialization

NetLogo procedure

to setup-agents
 create-custom-agents num-agents [. . .
 set current-view get-list num-agents -1
 set nogoods get-list num-agents 0
 set message-queue []
…]

d

The initialization of
DCSP application

Button type
graphical objects

to setup
 ca
 setup-patches ;initialization the interface
 setup-agents; initialization the agents
 ask agents[initialize]

Figure 8. Initialization of the DisCSP application

 Figure 9. The procedure for running the DCSP
application for the system SEIS

The working surface of the application should
contain NetLogo objects through whom the
parameters of each problem could be
controlled: the number of agents, the density of
the constraints graph, the number of colors.
These objects allow the definition and
monitorization of each problem parameters.
For the application running is proposed the
introduction of a graphical object of the button
type and setting the forever property. That way,
the attached code, in the form of a NetLogo
procedure (that is applied on each agent) that
will run continuously, until emptying the
message queues and reaching the Stop
command (which in NetLogo stops the
execution of an agent). The solution presented in
figure 9 is based on the utilization of the ask
command. That NetLogo command executes a
synchronization of each agent execution.
Another important observation is tied to
attaching the graphical button to the observer.
The use of this solution allows obtaining a
solution of implementation with synchronization
of the agents’ execution. In that case, the
observer will be the one that will initiate the
stoping of the DisCSP application execution. In
figure 9 the update procedure is attached and
handled by the observer. These elements lead to
the multi-agent system with synchronization of
the agents execution (SEIS). If it’s desired to
obtain a system with asynchronous operation

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

(SIEAS), will be used the second method of
detection, which supposes another update
routine. That new update routine will be
attached to a graphical object of the buton type
which is attached and handled by the turtle type
agents.

Figure 10. NetLogo implementation for AWCS

technique- SEIAS

P4. Monitorization of the evaluation
parameters
The model presented in this chapter allows
storing the costs for obtaining the solution. That
thing can be done using some variables attached
to the agents. For counting the flow of messages
it can be used a variable proprietary to each
agent (messages-received_nogood,etc), variable
that needs to be incremented in the moment of
receiving a message. That variable is
incremented in the routine of message
manipulation handle-message. Also, for
measuring the work effort carried out by the
agents can be used two variables nr_constraintc
and c-ccks. Those variables store the costs
necesary for each agent. Thus, those costs
should be measured.
Application of the methodology presented
previously allows the implementation and
evaluation of any asynchronous search
technique. In figure 10 is captured an
implementation for the AWCS technique that
uses uses the multi-agent SIEAS system.

 CONCLUSION

In this article was analysed the NetLogo
environment with the purpose of building a
general model of implementation and

evaluation for the asynchronous techniques
such as they could use the NetLogo environment
as a basic simulator in the study of asynchronous
search techniques.
In this article was proposed a general model of
implementation and evaluation for the
asynchronous search techniques. The proposed
model supposed the identification of NetLogo
objects necessary for implementing the
asynchronous search technique (agents,
messages, message queues, agents ordering) and
of the interface of interaction with the user. In
this article was proposed solutions for simulating
the objects of any DisCSP application. Also, were
proposed solutions for counting the costs for
obtaining a solution using different measuring
units. That thing will allow the evaluation of
performances for asynchronous search
techniques and eventual improvements for them
Also, the model allows studying the behaviour of
the agents for various techniques, studyind the
costs for each agent.
As a general conclusion, we think that the model
we achieved can be used for the study and
analysis of the asynchronous techniques, the
model allowing their complete evaluation.
Students can use the models on the site [7] to
study, to understand the functioning of the
asynchronous search techniques and, perhaps,
to extend them. Starting from those models, they
can develop other versions of the asynchronous
search techniques.

 REFERENCES

[1.] C. BESSIERE, I. BRITO, A. MAESTRE, P. MESEGUER,

Asynchronous Backtracking without Adding
Links: A New Member in the ABT Family.
Artificial Intelligence, 161:7-24, 2005

[2.] MUSCALAGIU, H. JIANG, H.E.
POPA. “Implementation and evaluation model
for the asynchronous techniques: from a
synchronously distributed system to a
asynchronous distributed system”, in
Proceedings of the 8th International Symposium
on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2006), Timisoara,
Romania, IEEE Computer Society Press, 2006,
pp. (209-216)

[3.] YOKOO M., E.H. DURFEE, T. ISHIDA, K. KUWABARA
(1998): The distributed constraint satisfaction
problem: formalization and algorithms. IEEE
Transactions on Knowledge and Data
Engineering 10 (5)

2009/Fascicule 1/January‐March/Tome II 19

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

[4.] YOKOO MAKOTO (2001): Distributed Constraint

Satisfaction- Foundation of Cooperation in
Multi-agent Systems. Springer

[5.] MAS Netlogo Models-a.
http://jmvidal.cse.sc.edu/netlogomas/

[6.] MAS Netlogo Models-b.
http://ccl.northwestern.edu/netlogo/models/
community

[7.] MAS Netlogo Models-c. http://discsp-
netlogo.fih.upt.ro/

[8.] WILENSKY, U. NetLogo itself: NetLogo.
http://ccl.northwestern.edu/ netlogo/. Center for
Connected Learning and Computer-Based
Modeling, Northwestern University. Evanston,
IL, 1999

 AUTHORS & AFFILIATION

1. IONEL MUSCALAGIU,
2. DIANA MUSCALAGIU,
3. TEODORA PETRAS,
4. MANUELA PĂNOIU

1. 2. 3, 4. UNIVERSITY „POLITEHNICA” TIMISOARA,
FACULTY OF ENGINEERING HUNEDOARA,
ROMANIA

2009/Fascicule 1/January‐March/Tome II 20

	 Keywords:
	artificial intelligence, distributed programming, constraints, agents
	There exist complete asynchronous searching techniques for solving the DCSP, such as the ABT (Asynchronous Backtracking) and DisDB (Distributed Dynamic Backtracking) [1,3,4]. There is also the AWCS (Asynchronous Weak-Commitment Search) [3,4] algorithm which records all the nogood values. The ABT algorithm has also been generalized by presenting a unifying framework, called ABT kernel [1]. From this kernel two major techniques ABT and DisDB can be obtained. The implementation of asynchronous search techniques based on distributed constraints can be done in any programming language allowing a distributed programming, such as Java, C, C++ or other. Nevertheless, for the study of such techniques, for their analysis and evaluation, it is easier and more efficient to implement the techniques under certain distributed environment, which offer various facilities, such as NetLogo [8], [5,6,7].
	 Implementation and evaluation methodology for the asynchronous techniques
	 Conclusion
	 References
	[8.] Wilensky, U. NetLogo itself: NetLogo. http://ccl.northwestern.edu/ netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL, 1999
	 Authors & Affiliation

