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FLUID FLOW INDUCED BY A MOBILE PROFILE
WITH NON-CONSTANT CIRCULATION

B Abstract:

This paper deals with an approach of the inviscid 92-dimensional fluid flow induced by the
rototranslation of a profile (with a cuspidal point) in the fluid mass, by accepting a non-constant
circulation T(t) around the profile, ie., multiformity for the pressure field. Some aerodynamic

characteristics of a flow induced by an oscillatory motion of a Joukovski profile are calculated.
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B GENERALITIES ON THE UNSTEADY FLOw
INDUCED BY A MOBILE PROFILE

Let us consider the two-dimensional unsteady
irrotational flow of an inviscid incompressible
fluid, induced by the motion of a (wing) profile ¢
with a cuspidal point at the trailing edge, the
fluid being supposed at rest at infinity. The
contour of the profile ¢ is a simple, closed
rectifiable curve OC while the exterior mass
forces are neglected.

By considering a fixed of rectangular
coordinates Ox,y, together with a mobile frame
Oxy linked to the mobile profile, we denote at

every time t, by
—_—

@) = (0 x,0x)
by z,=X,+iy, the affix of the origin of the
system Oxy which has the velocity V,(u,,v,),
by F=Xi+yj=x,1, +Yy,J, the position vector ¥ of
an arbitrary point Meext(c) while (f,j) and
(fl,]l) are the unit vectors of the mobile and

fixed coordinates system respectively, by
®(0,0,w) the instantaneous rotation of the
mobile frame. We can write that the absolute
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velocity, N , of a fluid particle, located at M(F) , is
given by V=ui +Vj=V, +V,,
where V,=V,+®xr is the transport velocity

while V,=u,i+ vr] =Xi+yj Is the relative
velocity of the fluid particle M .

Concerning the fluid flow equations (within the
mobile frame Oxy ), denoting by p, p,V the
pressure, the mass density and the magnitude of

the absolute velocity respectively, they are

ﬂ+grad Ly V-V, +£gradp=0
ot 2 p .

divw=0

rotv=0
In what follows we will accept the multiformity
of the pressure field which leads to a period of
the pressure around the profile and implicitly to
a non-constant circulation T(t) around the
contourac .

By introducing the complex potential

f(z;t) = o(x,y;t) +iy(x,y;t) and the complex

velocityw =f'(z) =u—iv, where u = % _ov and
ox oy

:%: —Z—\)'(’, for solving the above proposed
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flow problem, we are led to the following
boundary value problem for the complex
potential:

Find the function f:d=ext(c) > C so that

1. f(z;t) is holomorphic in the unbounded
domaind Vt>0,

2 w(z,t)="f'(z,t) is a uniform holomorphic
function in d and limw(z) =0,

|7 >
3. Im{f(z,t)} =y is continuous on oc and
X2 + 2
Vi), =Up(B)y ~ Vo (1) x— o) .
In order to solve this problem we will follow the

classical  conformal mapping  technique.
Denoting by

a, a
H:D—d, z:H(Z):amZ+ao+?1+Z—'§+,,,

the conformal mapping which applies the
exterior D of a circumference C of centre O
and radius R, ie., C(O,R), of the plane OXY
(Z=X+iY), onto the physical flow domain d,
the transformed complex potential
F(Z;t) =f(H(Z)) = O(X, Y;t) +i¥(X,Y;t) becomes
a holomorphic function in D =ext(C) which is
regular at infinity and whose imaginary part
¥ =Im{F(Z;t)} on the circumference satisties
X2(X,Y) +y2(X, V)|

Pl =UgY(X, V) = VoX(X,Y) — o 5

oc
where x(X,Y)+iy(X,Y)=H(X+iY).
But this exterior Dirichlet problem for a circle
could be solved by considering the Schwartz-
Villat formula for determining the flow with
circulationT'(t), i.e.,

. 1 dg TI(t) Z
F(Z;t)= —;({‘P(g)g_—z+2—niLogE,
Assuming that the cuspidal point at the trailing
edge of our profile with the affix b=x,+iy,
corresponds to the point Z=R of the planeZ,
the involved conformal mapping could be
represented in the form
z=H(Z)=b+(Z-R)*-q(2). q(R)#0,

and its derivative by H'(Z)=(Z -R)q,(Z) where

a:(2)=29(2)+(Z-R)a'(2) .
Following now the Couchet way [9] for a
complete determining of the complex potential
of the flow, we will express the unknown
complex potential F(Z) under the form:
F(Z:1) = U (DF, (Z) + Vo (DF, (2) + o(t)F; (2) + T(D)F, (Z)

a R?

where F,(Z)=H(Z)-a,Z-a, -

F,(2) = —i[H(Z) —a,Z-a,- a“ZRZ }
_ 1.
O

where r?(c) = x2(c) + y*(q) = H() - H(c) and
1 Idrz(g)

1
A2)=—F,'(@2)=-—— ,
(2)=5iF ) 4mic ¢-Z

1 Z
F,(Z)==—Log=.
+(2) 2mi gR

Considering the complex velocity
df(z;t) _ dr(Z;t) 1

w(z;t) = ,
dz dz  H'(2)
by imposing the Joukovski rule (at the image of
the cuspidal point) dr(Z;t) - _ 0, we get the
Z=R

necessary value of the circulationT (t), namely,
I'(t)=4nR(a, v, +Q o).

The velocity expression (u-iv) becomes
u,K+v,L+oM, where
., a,(Z*-R?
22 HE@
. a,
L {1 0@ (z R)]
2 ZO(Z)-RO(R)
- 29,(2) Z-R ‘
The velocity value at the trailing edge Z =R is
w(b)= uo{l __28, }— ivg + m—ZI(Q+ RCY)
Ra, (R) Ra, (R)

where Q=Q(R) and O'=Q'(R) .

B THE CASE OF JOukOVSKI TYPE PROFILF

Let us now consider the particular case of a
Joukovski type profile. To make precise by using
a conformal mapping of the type

(1-Xo)?

z=H(Z)=a,+Z+ , 0<X, <1,

0
the image of the circumference C(O,R) of the

plane Z becomes the considered Joukovski
profile whose rototranslation induces the fluid
flow. We denote by AB (A(a,0), B(b,0),
a=H(-1), b=HQ) ) the profile chord, its trailing
edge (cuspidal point) being z=b =H(1) .
Using the development

_ 2 _ 2 20, 2
(1 XO) + XO(lZZXO) + XO (123)(0) +..
we find a, =1, a, =(1-X,)?* and

H(Z)=Z+a, +
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H'(Z) = Z”_ZXZO z-1). Mach = 0.112, k=0.077
(2=X0) a =6+ 10 * sin(1.461*1t)
We also obtain the expressions
r a,(1-X,)? 7 FIGURE 1. Aerodynamic coefficients for oscillating
—2 -0 702 Joukovski J010 airfoil
Z (Z X ) JOLO Aarfoil
1-X,)?(2Z-X “ ' '
Q(Z):l +( 20) ( - o) e
2 Z2(Z-X,) - ok
3 —— o e =TT
Xo (L= X,) | l |
AL+ X HZ-X4)? | ' N ' ’
1 X - X2 T VLTSS LI
Q=0@)=a,+ 070, P T .
1 + XO e T
The circulation and the complex potential are, e 7
respectively, sos .
1+ X, -X3 o e
F=dnf v, + o 204 =720 " %0 ol B
2 1+ X,
0.5l L L L
1-X,)? . 1-X.)? [ t 2 E 4
Ft2)=u, %) 1 —ivq (%) +i - e iz
Z_XO Z Z_XO YA X versus time
o T T —
—i &_Fao(l_xo)_'_ (1_)(0)2 + Xo(l—X0)3 _
Z Z-X, ZZ-X;) (1+X.)Z-X,) o .
_ 14X, X = /
-2i Vo + E +M . Logz RE 7
2 1+X,
Consequently the complex velocity e = B B s
u-iv=u,K+v,L+oM, where tine |sec
Cr versus mmcwdenice
K@Zy=1- 21 Z=Xo)" ' '
Z Z+1-2X, oo b I
_ 205 _
L(Z):—l 1_(22 XO) (Z 1) , il S
Z°(Z+1-2X,) waile T
i (Z-X,)? -
Mz 2 Z=X0)" Z02) - o) .ﬁ
Z Z+1 2X Z-1 it 1der]
) Incidence versus time
z2Q2Z)-0@) _ a1, Z-X5 |, . : : ,
z-1 212 (Z-X,)?
o - - |
2(Xg—Xo ~1DZ% ~(X5 +X5 ~3X5 ~ 3%, +2)Z+ X (1= X ) (1+ %) g e ]
2L+ X)UZ~X, )
Putting then Z =1 we have K=X,, L=-i, oL L : e L
. . ZO(Z2)-0(1) time frec]
- I(l_XO). IZI Z 1 a I(2+a0 XO) O wversus incudences
and the value of the velocity at the trailing edge i ' 1 )
Isu—iv], =Xy —ivy —i(2+a, - Xg)o. L N
The non-constant circulation T'(t) implies a s | B
multiform pressure field, the pressure admitting =l B
a period around the profile. So, from Bernoulli
formula we obtain e G -
dr dv do S
dp=-p—=-4n % +Q—
[dp=pgg =4 ( dt dtj
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Cx versus incidens:
Q = T T ‘

0.2 D -1
~ b
o3 1 1 i

a 5 10
alfa [di]

1 versus incidence
1.5
I

| - 1
o 5 10
alfx [dyz]

According to the Blasius-Chapligin formulas and
imposing the JoukovsRi rule we obtain the
pressure resultant components and the moment
magnitude, i.e.

—2v2 +(B, —2a, —2Q)V,»

R, =2np d
+(C, —28,Q)0? + A, 0
dt
dv ,
2upvy + (A +2Q)u0-(4+B, -2X,)
R, =2np dt
~(C, +40-2%,0) 92
dt
2n(A; +B, —2a,)u,v, —4ma,Qu,o
My =—p dv do
+(2nC, + O L (TP +0Q)—
(2rnC, +Q) it (P +Q )dt
where Alzi, BIZE’ c, _C and
: . 4nX . X?3(3-X?
A:2|TE[(1—XO)2 _1]+| Ao > = 2in 0(3 ;))
(1+X,) (1+X,)
4 2
B=2n[(1_x0)2_1]— 4TEX02 =2nx0 Xo+22
1+X,) 1+X,)
1-X,)3
C:21'cao[(l—XO)2+1]+2nX0( 0)
+ X,
4nX, [a (1-X,)?
1+Xo)? [ 7 20+X,)
(1—XO)2

Q=4na, +4na,(1-X,)+4n(l-X,)+4nX, 1T X,
The final diagrams of this paper (figure 1)
present the numerical results calculated with the
above method for the symmetrical Joukovski
JO10 airfoil in an oscillating motion defined by
the oscillation angle oa(t)=o0,+A,, -sin k?vt ,

where a:|AB|/2, k=0,077, V =340-Mach .

R
We denotedC, = Ry ¢ v ¢ =R

x1

pav? ' " pav?’ T pav?’
R
C = \yllz, where R, =R, cosa+R,sino and
pa
R,;=-R,sina+R cosa.

The continuous line represents our results and
the dotted line in the diagram “C, versus
incidence”, represents the results obtained in the
paper [4].
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