

1.2. ANA DANIELA CRISTEA, 1.Ovidiu GELU TIRIAN

WEB SERVICES WITH APPLICATION SERVER ABAP

 Abstract:

The Application Server ABAP (AS ABAP) is part of the application layer that belongs to the SAP
NetWeaver platform. By using it, we have not only the possibility to create Web Services, but also to
easily consume the Web Service created with other technologies. The purpose of the present paper is
to present either the way we can create a Web Service by using AS ABAP, or the way we can consume
a Web Service in the Web Dynpro ABAP. In this respect, we create a Web Service (inside-out type) that
has a Function Module as end point. Then, we use the new SOA Manager application to manage,
configure and monitor its definition, we test the created Web Service and we define a proxy and a
logical port to consume it in the Web Dynpro ABAP.

 Keywords:

Web Service, Application Server ABAP, SAP NetWeaver Platform, Web Dynpro ABAP

 INTRODUCTION

© copyright FACULTY of ENGINEERING – HUNEDOARA, ROMANIA 79

The development environment of the
Application Server ABAP used to create ABAP–
based applications is the ABAP Workbench. This
environment offers the possibility to publish,
search for and call a Web Service (WS).
Fig. 1 shows the basic architecture of the WS
Framework that belongs to the AS ABAP [1].

Fig. 1 Basic WS Framework architecture [1]

The WS fundamental technologies are:
 SOAP – Simple Object Access Protocol, XML

based, extensible protocol that describes
how to invoke a Web service;

 UDDI – Universal Description, Discovery and
Integration, business registry that can be
used to index WSDL documents; so, this is
searchable;

 WSDL – Web Service Description Language,
special form of XML that contains all the
information that a client needs to invoke the
WS;

 WS-security – security standard as X.509,
Kerberos, Secure Socket Layer Protocol SSL,
etc.

The service provider creates the implementation
of the WS and provides the WSDL document. He
is responsible for the execution of the
functionality provided by the WS.
In ABAP, we can create a service provider for an
ESR Service Interface, the so-called „outside-in”
provider, or for an existing ABAP object, the so-
called „inside-out”. A service required can be
Enterprise Service Repository, URL/HTTP
destination or a local File.
A WS can be used in many situations, from email
validation to automation. As an example of
using a WS in SAP NetWeaver, we can mention
the communication between AS ABAP and

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

Adobe Document Services (ADS) that run on
Java stack, communication that is made via a
WS. Fig. 2 schematically shows this
communication and the HTTP connection to the
External Server [2].

Fig. 2 Web Service example [2]

Some advantages of the WS are presented below
[3]:
 There are defined independently of

programming platforms and languages;
 The WS definitions are expressed in XML

syntax;
 They can be developed in any programming

language;
 They can be published in a common

directory based on the UDDI standard;
 They can be easily executed over the

internet.
We can store released Web Services in a UDDI
registry. For the purpose of this paper, we have
used our service provider landscape.
There are many organizations that offer web
services for free (for example, the reference [4]).
At the reference [5], we can find the web address
of the public UDDI service directory that offers
SAP.

 CREATING AND TESTING A WEB SERVICE

With the ABAP Workbench, we have many
options to create a WS. For example, we can use
a BAPI, a Function Module, a Function Group or
a Message Interface.

We want to provide selection access to a
database table. A Function Module
implementation will be used as the Web Service
end point. After the implementation of the
Function Module, we create the Web Service
definition with only a few mouse clicks. In this
case, we have created an inside-out service
provider, because we have started with the
existing functionality and interfaces from inside
our system and used them as the basis of a new
system.
In our case, the WS will require the customer ID
and deliver the selected information. Fig. 3
shows the structure of our Function Module and
the created Web Service, by using the Service
Definition Wizard.

Fig. 3 Function Module and Web Service

structure

In the WSDL Tab, we can find the XML
representation of the WS definition. Fig. 4 shows
the structure of this file.
From the SAP NetWeaver 7.0, the SP14 Web
Services in the ABAP development environment
are no longer managed with the transactions
WSADMIN and WSCONFIG. We can use these
transactions only for the old WS. To manage the
new WS, we use the transaction SOAMANAGER.
This transaction represents a new Web Dynpro

2010/Fascicule 3/JulySeptember/Tome III 80

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

ABAP application that helps us to manage,
configure and monitor the service definitions.
The Service-Oriented Architectures (SOA)
enables the effective management of an SOA
implementation, represents a concept that offers
much more than a WS [6]. Fig. 5 shows our WS
into the Web Service Administration option
from the SOA Manager.

Fig. 4 The WSDL structure

Fig. 5 Web Service administration

To configure a Web service, we must create an
end point that contains a runtime configuration.
We have created only an end point, but we have
the possibility to create more than one if we
want to provide the same service with different
runtime configurations.
AS NetWeaver offers the possibility to create
secure WS; we can speak about security at the
transport layer and security at the message
layer. Fig. 5 shows the Security Provider
specially created for our service.

Fig. 5 Security Provider

As we have seen, our transport protocol is the
HTTP protocol, authentication through user ID
and password. For this kind of protocol, we can
choose one of the following security functions
[7]:

 Server-side authentication;
 Client-side authentication;
 Mutual authentication;
 Encryption and integrity.

Before developing the client application for our
WS, we have to test it. With this test, we ensure
that it works correctly and can be consumed in
the Web Dynpro ABAP without any problems.

Fig. 6 Testing the WS

To test our WS, we use “Open Web Service
navigator for selected binding” from the SOA
Manager, after we have set the address of the
application server on which the J2EE is running.
The Web Service Navigator is open. Then, we
enter the user ID and the password, to be able to
test it. Fig. 6 shows the way we can see if the WS
works correctly. We enter our WS parameter
idClient that will be passed as a request to the
Application Server. The Web Service Navigator

2010/Fascicule 3/JulySeptember/Tome III 81

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

sends us back the response, including all the
records for the searched ID. Another possibility
to test our WS is to use the WS navigator via URL
http://<host>:<port>/wsnavigator.

Fig. 7 Publishing the Web Service

The Service Registry is a central Register for the
WS. Here, we can publish our WS by using the
WSPUBLISH transaction, or the Publication
Administration from the SOA Manager (Fig. 7).
The Service Registry offers the possibility to
search for a WS by using some Categories. To
classify a WS, we can use the WSCLASS
transaction.

 CONSUMING A WEB SERVICE IN THE WEB

DYNPRO ABAP

Web Dynpro ABAP is the SAP technology used to
create web business applications in accordance
with the Model View Controller (MVC) paradigm.
According to this paradigm, the application data
and their user interface are separated.

Fig. 8 Proxy Object structure

The Model represents the business logic, the
View represents the user interface and the
controller has certain responsibilities, as the
communication between the model and the

view. More details about the Web Dynpro ABAP
can be found at the references [8-10].
As we have seen, the WSL document describes
our WS. To be able to consume this WS, we have
to create a client proxy and a logical port for
him. Fig. 8 shows the proxy structure.

Fig. 9 Consuming the WS Wizard

and the User Interface

We consume our defined Web Service as a
model in the Web Dynpro. In this way, we are
not interested about the way to implement the
business logic, but we use only its functionality.
Fig. 9 shows the proper User Interface and how
we can consume a WS in the Web Dynpro ABAP.

 CONCLUSION

WS are modules in service-oriented software
architectures; they are executable units that can
be called in heterogeneous system landscapes.
In this paper, we have used some of the WS
concepts with the Application Server ABAP.
Through an example, it has been examined the
inside-out approach for generating WS and
consuming them by using the Web Dynpro
ABAP. In the same time, we have used the Web
Service navigator to test our WS. So, we have
seen that a WS can be tested without being
necessary to have a consuming application.
The new “trend” in SOA is the Enterprise
Services, and that’s why we have a new

2010/Fascicule 3/JulySeptember/Tome III 82

http://%3Chost%3E:%3Cport%3E/wsnavigator

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

SOAMANAGER transaction that incorporates the
functionality of the old WSCONFIG and
WSADMIN and adds new capabilities required to
integrate a WS in this concept.

 REFERENCES

[1.] https://www.sdn.sap.com/irj/scn/go/portal/

prtroot/docs/library/uuid/ 30f 1b585-0a01-
0010-3d96-ad0ea291c4f9

[2.] https://www.sdn.sap.com/irj/sdn/go/portal/
prtroot/docs/library/uuid/ 20029530-54ef-
2910-1b93-c41608ae0c90

[3.] https://www.sdn.sap.com/irj/scn/go/portal/
prtroot/docs/library/uuid/ f65ecf90-0201-
0010-94b0-c9983be54c67

[4.] http://www.xmethods.net/ve2/index.po
[5.] http://uddi.sap.com
[6.] Martin Huvar,Timm Falter,Thomas Fiedler,

Alexander Zubev, Developing Applications
with Entreprise SOA, Galileo Press 2008

[7.] Martin Raepple, The Developer’s Guide to
SAP NetWeaver Security, Galileo Press,
2007

[8.] U. Gellert, D. Cristea, Web Dynpro ABAP
praxisbook, Springer, in press

[9.] Rich Heilman, Thomas Jung, Next
Generation ABAP Development, Galileo
Press 2007

[10.] The 14th international conference, The
knowledge based organization, November
2008, Cristea Ana Daniela, Adela Diana
Berdie, Osaci Mihaela, User Interfaces with
Web Dynpro ABAP and Web Dynpro Java,
“Nicolae Balcescu” land Forces Academy
publishing Haus Sibiu, 2008.

[11.] http://help.sap.com

 AUTHORS & AFFILIATION

1.2. ANA DANIELA CRISTEA,
2.Ovidiu GELU TIRIAN

1. UNIVERSITY “POLITEHNICA” TIMISOARA, FACULTY
OF ENGINEERING HUNEDOARA, ROMANIA
2. NWCON TECHNOLOGY CONSULTING, GERMANY

ACTA TECHNICA CORVINIENSIS
– BULLETIN of ENGINEERING

ISSN: 2067-3809 [CD-Rom, online]
copyright ©

University Politehnica Timisoara,
Faculty of Engineering Hunedoara,

5, Revolutiei,
331128, Hunedoara,

ROMANIA
http://acta.fih.upt.ro

2010/Fascicule 3/JulySeptember/Tome III 83

http://acta.fih.upt.ro/

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

ACTA TECHNICA CORVINIENSIS

– BULLETIN of ENGINEERING
ISSN: 2067-3809 [CD-Rom, online]

copyright ©
University Politehnica Timisoara,

Faculty of Engineering Hunedoara,
5, Revolutiei,

331128, Hunedoara,
ROMANIA

http://acta.fih.upt.ro

ANNALS
of

FACULTY ENGINEERING HUNEDOARA
– INTERNATIONAL

JOURNAL of ENGINEERING

ISSN: 1584-2665 [print, online]
ISSN: 1584-2673 [CD-Rom, online]

copyright ©
University Politehnica Timisoara,

Faculty of Engineering Hunedoara,
5, Revolutiei,

331128, Hunedoara,
ROMANIA

http://annals.fih.upt.ro

2010/Fascicule 3/JulySeptember/Tome III 84

http://acta.fih.upt.ro/
http://annals.fih.upt.ro/

	 Keywords:
	Web Service, Application Server ABAP, SAP NetWeaver Platform, Web Dynpro ABAP
	 Conclusion
	 References
	 Authors & Affiliation

