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 ABSTRACT: 

In this article, the temperature distribution in the unit cell for various inclusion shapes at different conductivity ratios, 
contact ratios and concentration were carried out by ANSYS software with suitable boundary conditions. The software 
validation and mesh size has been carried out.   
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INTRODUCTION 
The importance of two-phase materials such as 
ceramics, metal foams, emulsion and suspended 
systems, granular materials lies in many of the 
applications in microelectronic chip cooling, 
spacecraft structures, catalytic reactors, heat 
recovery process, heat exchangers, heat storage 
systems, petroleum refineries, nuclear reactors, 
electronic packaging, and food processing. Many 
researchers have spent an enormous amount of effort 
on developing various analytical methods for modeling 
and calculating two-phase homogeneous materials 
with imbedded inclusions and surrounding inter phase. 
Moreover, this problem has importance because of its 
analogy with the general susceptibility of dispersed 
media such as dielectric constant, refractive index, 
magnetic permittivity, electrical conductivity, elastic 
modulus, and diffusion coefficient. The problem is one 
of the long standing issues and has been treated in 
many papers on the basic of unit cell approach by 
considering the primary parameters such as 
concentration of the dispersed phase (υ), conductivity 
ratio (α) and secondary parameters (contact 
resistance, heat transfer through radiation, Knudsen 
effect and geometrical configurations). Numerous 
models were developed to find out the effective 
thermal conductivity (ETC) of the mixtures, but one of 
the major limitations of the models is its suitability 
for specific applications. Maxwell’s work (1) 
predicting the magnetic permittivity of a dilute 
suspension of spheres is the earliest reported work in 
the modeling of transport properties of two-phase 

media. But one of the limitations of the model is 
applicable for lower concentration of the dispersed 
phase. The Maxwell and phase inverted Maxwell (2) 
models are the minimum and maximum bounds for 
predicting the thermal conductivity of the two phase 
system. These are the most restrictive bounds 
proposed and every model should incorporate these 
bounds as a minimum and maximum. The upper and 
lower limits to the conductivity of two-phase materials 
based on parallel and series resistances were given by 
Wiener (3). Zehner and Schlunder (4) proposed a model 
considering the effect of particle contact as well as 
the effect of secondary parameters such as thermal 
radiation, pressure dependence, particle flattening, 
shape and size distribution for cylindrical unit cell 
containing spherical inclusions. An important 
deficiency in the model is that the deformation of the 
flux field is taken only as a function of concentration, 
not as a function of the conductivity ratio. Hsu, et al 
(5) obtained algebraic expressions for effective 
thermal conductivities of porous media by applying 
lumped parameter method, which is based on an 
electric resistance analogy. Models were developed to 
describe the effective thermal conductivity of 
randomly packed granular materials based on the unit 
cell method, by Crane and Vachon (6). A review of 
thermal conductivity of packed beds at no-flow 
condition was described by the Tsotsas and Martin (7). 
Bruggeman (8) extended Maxwell’s result for lower 
concentration of the dispersed phase to the full range 
of concentration by assuming the mixture to be quasi-
homogeneous. Raghavan and Martin (9) proposed a unit 
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cell model that agreed exactly with field solutions of 
Maxwell and provided the basis for a fundamentally 
correct approach in the modeling of conductivity. 
Numerical study for effective conductivity based on a 
model made up of spheres in cubic lattice has been 
carried out by Krupiczka (10). Krischer (11) described 
the unit cube thermal conductivity model. A review of 
conduction in heterogeneous systems was studied by 
Meredith and Tobias (12). The purpose of this work 
was correcting, modifying and extending the Rayleigh 
(13) formula for interactions of higher order between 
particles. Bauer (14) developed an analytical model 
for the effect of randomly distributed inclusions or 
pores on the solution of Laplace’s heat conduction 
equation for prediction of thermal conductivity of 
packed beds. The effective thermal conductivity of 
packed beds based on field solution approach was 
carried out by Dietz (15). A review of various methods 
for predicting the effective thermal conductivity of 
composite materials was proposed Progelhof et al. 
(16). The thermal conductivity of a saturated porous 
medium was calculated for a two-layer model 
representing as electrical resistance in an electrical 
circuit (Deisser and Boregli; 17). Kunii and Smith (18) 
proposed a unit cell model. The electrical conductivity 
of binary metallic mixtures was investigated by 
Landauer (19). Samantray et al. [20] proposed a 
comprehensive conductivity model by considering the 
primary parameters based on unit cell and field 
solution approaches. Later, the validity of the model 
was extended to predict the effective conductivity of 
various binary metallic mixtures with a high degree of 
accuracy (21). Reddy and Karthikeyan (22) developed 
the collocated parameter model based on the unit cell 
approach for predicting the effective thermal 
conductivity of the two-phase materials. Tai [23] 
deduced mathematical expressions for the equivalent 
thermal conductivity of two and three-dimensional 
orthogonally fiber-reinforced composites in a one-
dimensional heat flow model. In this regard, Tai 
applied the fundamental definitions of thermal 
conductivity and the simple rule of mixtures to a unit 
cell of an orthogonally fiber-reinforced material. Tai, 
showed that whether a square slab model or a 
cylindrical fiber model is used makes little difference 
to the heat flux; while the fiber volume fraction 
matters. Jones and Pascal [24] developed a three-
dimensional numerical finite-difference to calculate 
the thermal conductivity of a composite with two or 
more constituents to better understand how the 
relative quantities and distributions of the component 
materials, within a sample, affect the whole sample 
conductivity. Graham and McDowell [25] estimated 
the transverse thermal conductivity of continuous 
reinforced composites containing a random fiber 
distribution with imperfect interfaces using finite-
element analysis. Krach and Advani [26] investigated 
the effect of void volume and shape on the effective 
conductivity of a unidirectional sample of a 3-phase 
composite using a numerical approach consisting of a 
unit cell. Their findings clearly showed that the 

influence of porosity on thermal conductivity could not 
be described solely by the void volume. They found 
that the shape and distribution of the voids influence 
the effective thermal conductivity. Al-Sulaiman et al 
[27] developed correlations based on a finite element 
analysis that predict the thermal conductivity of fibers 
utilizing the easy to measure thermal conductivity of 
the Fiber Reinforced Composite Laminates (FRCL) and 
the other constituents. In their model, Al-Sulaiman et 
al considered the FRCL cured at high pressures such 
that it includes no air voids. Zou et al. [28] come up 
with an analytical expression for transverse thermal 
conductivities of unidirectional fiber composites with 
and without thermal barrier is derived based on the 
electrical analogy technique and on the cylindrical 
filament-square packing array unit cell model (C-S 
model). 
MODELING FOR VARIOUS INCLUSIONS 
SQUARE CYLINDER 
The effective thermal conductivity of the two 
dimensional medium can be estimated by considering a 
square cylinder with cross-section ‘a x a’ having a 
connecting bar width of ‘c’ as shown in the Fig. 1. The 
effective thermal conductivity of the two-dimensional 
periodic medium is assumed to be depending on the 
finite contact between the inclusions. The two 
dimensionally spread inclusions are connected by 
connecting plates with ‘c/a’ denoting the contact 
parameter.  

 
Fig. 1.Two-dimensional spatially periodic two-phase 

system (Touching square cylinder) 
Because of the symmetry of the plates, one fourth of 
the square cross-section has been considered as a unit 
cell and is shown in Fig. 2.  

 
Fig.2. Unit cell of square cylinder 
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The unit cell consists of three rectangular solid layers 
(1), (2), (3) as shown in the Fig.2. The dimensions of 
the first, second and third rectangular solid layer is 
(l/2) (c/2), (a/2) ((a-c)/2) and c/2) ((l-a)/2) 
respectively. The model is based on the one 
dimensional heat conduction in the unit cell. The 
concentration for square cylinder is given as 

2υ [ (1 2 ) 2 ]= ε − λ + ελ                      (1)            
HEXAGON CYLINDER 
The effective thermal conductivity of the two 
dimensional medium can be estimated by considering 
a Hexagon cylinder with cross-section ‘a x a’ having a 
connecting bar width of ‘c’ as shown in the Fig.3. The 
effective thermal conductivity of the two-dimensional 
periodic medium is assumed to be depending on the 
finite contact between the inclusions. The two 
dimensionally spread inclusions are connected by 
connecting plates with ‘c/a’ denoting the contact 
parameter 

 
Fig.3.Two-dimensional spatially periodic two-phase 

system (Touching hexagon cylinder) 
Because of the symmetry of the plates, one fourth of 
the hexagon cross-section has been considered as a 
unit cell and is shown in Fig.4 
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Fig.4. Unit cell of hexagon cylinder 
The unit cell consists of three rectangular solid layers 
(1), (2), (3) and one triangular solid layer (4) as shown 
in Fig.4. The dimensions of the first, second and third 
rectangular solid layer is (l/2) (c/2), (c/2) ((l-c)/2) 
and ((a√3-c)/2) ((a-c)/2) respectively. The dimension 
of triangular solid layer is ((a√3-c)/2) ((a/2)-(c/2√3)). 
The concentration for hexagon cylinder is given as 

υ = (2aλ) + [(3√3-(3+√3) λ) a2]/l2            (2) 
OCTAGON CYLINDER 
The effective thermal conductivity of the two 
dimensional medium can be estimated by considering 
a Octagon cylinder with cross-section ‘a x a’ having a 

connecting bar width of ‘c’ as shown in the Fig.5. The 
effective thermal conductivity of the two-dimensional 
periodic medium is assumed to be depending on the 
finite contact between the inclusions. The two 
dimensionally spread inclusions are connected by 
connecting plates with ‘c/a’ denoting the contact 
parameter 

 
Fig.5.Two-dimensional spatially periodic two-phase 

system (Touching octagon cylinder) 
Because of the symmetry of the plates, one fourth of 
the octagon cross-section has been considered as a unit 
cell and is shown in Fig.6. 

 
Fig.6. Unit cell of octagon cylinder 

The unit cell consists of four rectangular solid layers 
(1), (2), (3), (4) and one triangular solid layer (5) as 
shown in Fig.6. The dimensions of the first, second, 
third and fourth rectangular solid layer is (l/2) (c/2), 
(c/2) ((l-c)/2), ((a+a√2-c)/2) ((a-c)/2) and (a/√2) ((a-
c)/2) respectively. The dimension of triangular solid 
layer is (a/√2) (a/√2). The concentration for octagon 
cylinder is given 

( )( )2υ 2 1 2 1 2⎡ ⎤= ε + − λ + ε⎣ ⎦ λ          (3) 
 

CIRCULAR CYLINDER 
The effective thermal conductivity of the two 
dimensional medium can be estimated by considering a 
Circular cylinder of diameter ‘a’ having a connecting 
bar width of ‘c’ as shown in the Fig.7. The effective 
thermal conductivity of the two-dimensional periodic 
medium is assumed to be depending on the finite 
contact between the inclusions. The two dimensionally 
spread inclusions are connected by connecting plates 
with ‘c/a’ denoting the contact parameter. 
Because of the symmetry of the plates, one fourth of 
the circular cross-section has been considered as a unit 
cell and is shown in Fig.8. 

The unit cell consists of two rectangular solid layers 
(1), (2) and one quarter circular solid layer (3) as 
shown in the Fig.8. 



 

 
Fig.7.Two-dimensional spatially periodic two-phase 

system (Touching circular cylinder) 

 
Fig.8. Unit cell of circular cylinder 

The dimensions of the first and second rectangular 
solid layer is (l/2) (c/2), (c/2) ((l-c)/2) respectively. 
The radius of circular solid layer is (a/2)-(c/√2).The 
concentration for circular is given as  

υ = [{π [(1/2)-(λ/√2)] 2-λ2} (a/l) 2]+(2aλ)/l       (4) 
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NUMERICAL ANALYSIS FOR VARIOUS INCLUSIONS 
Numerical heat transfer analysis of the unit cell for 
various inclusion shapes (square, hexagon, octagon 
and circular cylinders) has been carried out to 
estimate the Effective Thermal Conductivity of the 
two-phase materials via the Finite Element 
simulation. For this heat transfer analysis ANSYS11.0, 
a finite element software package is used. 
Boundary condition 
One face of the unit cell is subjected to constant 
temperature and the opposite face is subjected to 
convective thermal environment. All other faces are 
kept as adiabatic in order to achieve 1D heat transfer. 

 
Fig 9.The Thermal boundary condition applied  

on the unit cell 
The boundary condition imposed on the unit cell is 
shown in the Fig.9. 
Determination of Effective Thermal conductivity 
From the results of the finite element analysis, the 
average surface temperature on the convection wall 

of the unit cell is computed. Once the temperature of 
the convective side is known, the effective thermal 
conductivity across the two walls can be calculated 
using the following simple heat balance equation 

( ) ( )
L

TTAK
TThA wallwalleff

convwall
21

2

−
=−             (5) 

A - Wall area (m2)  
h - Heat transfer coefficient (W/m2.K) 
Tconv-bulk temperature of the fluid at the convection 
side (K)  
Twall1 - fixed wall temperature (K) 
Twall2-convective wall temperature (K) 
Several simulations were done for a wide spectrum of 
possible variation in the concentrations, conductivity 
ratios and contact ratios for all inclusion shapes. 

 (a) 

 (b) 

 (c)       

 (d) 
Fig10. (a)-(d) Element edge size Vs Average 

temperature for square, hexagon, octagon & circular 
cylinders 



 
Mesh sensitivity test 
This model has been first tested for mesh-
independent solution. In this regard, six runs have 
been conducted for the case of two-phase 
material with conductivity ratio=800, 
concentration=0.5 and contact ratio=0.02. In 
these six runs, the finite element edge size was 
changed from very coarse to very fine element. In 
each of these six runs, the average temperature 
at the convective wall of the two-phase material 
was calculated. 
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Table1. Mesh Sensitivity Test 
Element 
edge size 

Square 
cylinder 

Hexagon 
cylinder 

Octagon 
cylinder 

Circular 
cylinder 

0.2 344.248 343.3291 342.2664 345.8729 
0.1 343.8929 343.2161 342.0569 345.7442 
0.05 343.7064 342.6477 341.3922 345.5785 
0.03 343.6591 342.538 341.1802 345.5469 
0.025 343.6472 342.5136 341.1242 345.5315 
0.02 343.6339 342.4941 341.1 345.5225 

 

Table.1.gives a summary of the output of these 
six runs indicating the element edge size and the 
corresponding average wall temperature obtained 
for various inclusions. A graph (Fig.10) is plotted 
between the element edge size and the 
corresponding average wall temperature for 
various inclusions. From the graph it is seen that 
after an element edge size of 0.03 the average 
wall temperature remains almost constant 
indicating the convergence of the solution. Looking 
for high accuracy and reasonable CPU simulation 
time, it is decided to use a medium element edge 
size of 0.03. This reflects clearly that the 
numerical solution obtained via this FE simulation 
is mesh size independent. 
Software validation 
The Finite element simulation has been bench-marked 
to obtain the numerical temperature distribution 
along the thickness of the unit cell by simulating a 
simple non-linear 1D analysis with thermal contact 
resistance. The problem chosen for validation consists 
of three layers of different thermal conductivity and 
different wall thickness. Both face of the wall is 
subjected to convective environment. An internal 
contact thermal resistance is given between each 
layer. The ANSYS code for the above problem is 
developed. The results obtained from the ANSYS 
software package is compared with the available 
analytical solution. This comparison is shown in the 
Fig.11. 

 
Fig.11. Reliable test for ANSYS 

This figure reveals an excellent agreement between 
the analytical and the numerical solution obtained via 
ANSYS. This is considered as an excellent validation of 
the ANSYS software package. 
TEMPERATURE DISTRIBUTION IN THE UNIT CELL FOR VARIOUS 
INCLUSION SHAPES 
The temperature distribution in the unit cell for 
various inclusion shapes at different conductivity 
ratios and contact ratios for concentration=0.5 is 
shown in the Figs12-17. 

(a) 

(b) 

(c) 

(d) 
Fig12. (a)-(d) Temperature distribution in the unit cell 

for various inclusion shapes at α=0.1, υ=0.5 and 
λ=0.02. 



 
 

(a) 

(b) 

(c) 

 (d) 
Fig13. (a)-(d) Temperature distribution in the unit cell 
for various inclusion shapes at α=0.1, υ=0.5 and λ=0.1 
 
 

 

(a)  

(b) 

(c) 

(d) 
Fig14. (a)-(d) Temperature distribution in the unit cell 
for various inclusion shapes at α=0.1, υ=0.5 and λ=0.2 
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(a) 

(b) 

(c) 

(d) 
Fig15. (a)-(d) Temperature distribution in the unit cell 
for various inclusion shapes at α=20, υ=0.5 and λ=0.02. 

(a) 

(b) 

(c) 

(d) 
Fig16. (a)-(d) Temperature distribution in the unit cell 
for various inclusion shapes at α=20, υ=0.5 and λ=0.1 
 

 
 

137



 
 

(a) 
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(b) 

(c) 

 (d) 
Fig17. (a)-(d) Temperature distribution in the unit cell 
for various inclusion shapes at α=20, υ=0.5 and λ=0.2 

 

 
CONCLUSION 
The circular shaped inclusion has largest non-
dimensional effective thermal conductivity followed by 
square, hexagon and octagon shaped inclusions 
respectively. For the same concentration and contact 
ratio, hexagon shaped inclusion has largest heat 
transfer area followed by circular, octagon and square 
shaped inclusions respectively.  Since hexagon has the 
largest heat transfer area it is expected to have larger 
non-dimensional effective thermal conductivity than 
other inclusion shapes. But the geometry of hexagon 
and octagon shapes are not symmetric about its mutual 
perpendicular axis i.e., hexagon and octagon shapes 
exhibits anisotropic property. This is the reason for 
the hexagon shaped inclusion to have lower non-
dimensional effective thermal conductivity than 
circular and square shaped inclusions. 
SYMBOLS 
α  -  Conductivity ratio(ks/kf)` 
υ  -  Concentration 
λ  -  Contact ratio(c/a) 
ε  -  Length ratio(a/l) 
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