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B  ABSTRACT:

A new asymmetric meshing has been proposed, formed by spur gears with a very small number of teeth where the
transverse contact ratio is bigger than one. The meshing in the general case where the gears have different number of
teeth has been clarified. The main geometric parameters have been defined. The equations of the tooth profiles have
been determined. Analytic dependencies for the geometric dimensions of the gears have been shown. The geometric

parameters of the asymmetric gear drive have been found.
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INTRODUCTION

The use of spur involute gears for continuous
transmission of rotary motion is limited in cases
where teeth number z of the pinion (the small gear)
is very small (z = 4,3,2,1). Then the transverse contact
ratio €, is smaller than one and after a specified gear
pair goes out of meshing the next gear pair still has
not meshed. Due to the small contact ratio the
movement in the gear is interrupted. In practice this
means that using the traditional involute meshing it is
not possible to realize continuous transmission of
motion from the one gear to the other one if gears
have a very small teeth number.

If the gear meshing is involute and symmetric, in
[Alipiev et al., 2009] it is proved that at e,>1 the
smallest equal teeth number of the gears is e
7, =2, =5. This result, got in different ways, is well-
known also by the publications of [Kotelnikov, 1973],
[Bulgakov, 1995] and [Kapelevich et al., 2002]. When
the asymmetric involute meshing is used [Alipiev,
2008] for the smallest equal teeth number of the
gears, synthesized using the “method of the realized
potential” [Alipiev, 2009] it is got 7, =2, =4. In this
case the opposite lateral teeth profiles are drawn by
different involute curves. Then the transverse contact
ratio for the driving direction of movement is g,>1,

and for the non-driving direction - e,<1.

Gears of a small teeth number find practical
application mainly in gear pumps, gear compressors,
kinematic transmissions, realizing large tooth ratios,
some types of elevating mechanisms etc. Under equal
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other conditions (dimensions, weight, width of gears),
the small teeth number leads to an increase of the
volume of tooth spaces and an increase of the
efficiency of the gear pump. Besides, by decreasing
the teeth number of the pinion and keeping the tooth
space of the gear, its tooth ratio increases.

An object of survey in the present paper is the
geometry of a new type of asymmetric meshing where
the continuous transmission of motion (g, >1) in the

driving direction is realized by gears, having a very
small teeth number.

GENERAL DATA FOR THE MESHING
The transverse contact ration in the driving direction
of motion could be increased if an asymmetric meshing
shown on Figure 1 [Alipiev, 2010] is used. In this case
the asymmetric teeth of the meshed gears have a
protruding and concave sides. Despite the geometric
shape of each tooth of the generally different gears 1
and 2 is simply defined by three successively connected
curves. The first curve, shaping the protruding
(driving) tooth side is the involute curve ME (M’E’).
It is got as a trajectory of point K on the straight line
AB, when this straight line rolls on the respective
base circle of a radius Iy or Iyo . The beginning of the
first curve begins from the base circle, and its end

ends in the point E (E'). Using the second curve is
shaped the tooth crest in the area from point (E (E/)

to point N (N’). This curve is an arc of a circle (called
lantern one) of a radius rp1(¥p2), of a center C1 (C2)

at a distance of rc1(fc2) from the gear center Op (02).

55



ACTA TECHNICA CORVINIENSIS — Bulletin of Engineering

Despite the center Ci1(C2) lies on the tangent to the
base circle of the respective gear, descended from the

end point E (E’) of the involute curve.

Figure 1. Formation of involute-lantern meshing

The third curve NL (N’L’) shapes the concave side of

the asymmetric tooth. At gear 1 this curve NL is got
as a wrapping curve of the relative places which the

tooth crest gets (the lantern circle of a radius rp2)
from gear 2 in the plane of gear 1. Analogously the

curve N/’ of the tooth of gear 2 is got as a wrapping
curve of the lantern circle of a radius rp1 of gear 1.

The end point L(L') of the third curve lies on the

respective base circle Iy (lh2) and appears as an
initial point for the involute profile of the next
neighbouring tooth.

The provision of maximum overlap by meshing of the
involute profiles is got due to their contact along the
whole line of action AB. For this purpose the areas of
the involute teeth profiles are chosen in this way that

the Kkpveosume trajectories EB and E'A of their
end points E and E! cross the end points B and A

of the action line, and their initial points M and M’
lie on the corresponding base circles.

The proposed gear meshing is called an ,involute-
lantern meshing”, because in the driving direction of
motion the conjugate profilers are the meshed

involute curves ME and M'E’, and in the opposite

direction mesh the arc EN (E/N’, respectively) of
the lantern circle of the one gear of the concave
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profile LN/ (LN, respectively) of the asymmetric
tooth of the other gear. In other words, in the one
direction of movement the meshing is involute and in
the other one - lantern. Hence the lantern meshing is
corrected since the centers C1 and Cy of the lanterns

do not lie on the respective centroids of the gears
when realizing the gear meshing, defined as pitch

circles of radii rma and rw2. In contrast to the
traditional lantern meshing where the tooth profile of
the one gear is a circle and of the other one - an
equidistant curve of a epicycloid, in the proposed
meshing the non-involute teeth profile is a

combination of two connected curves (concave profile
and an arc of a circle).

EQuATION OF THE TEETH PROFILES

The geometry of asymmetric gear profiles is fully
determined if the following independent values (Figure
1) are specified: teeth number z; and z, of both
gears; the radii of the pitch circles r,, andr, ; the
radii of the lantern circles rpand 1y ; the radii ry and
.., on which are placed the centers of the lanterns;

the pressure angle of the involute meshing o, .

In order to provide expression in scale of all geometric
dimensions, coming from the experience in the theory
of the traditional involute meshing, eit is more
rational to use another set of independent values,

including: the gearing module m; teeth number z;
and z, ; the coefficients ry and ry, of the radii of the
lantern circles, the coefficients Ay and A, of the
shape of the concave teeth profiles; the angle of
involute meshing o.,. In this set of parameters, 7,

Zo, fp1, fp2, M and A, cre dimensionless values, and

the module m is a scale factor. The relation between
the real linear dimensions and the corresponding
dimensionless values from the above mentioned two
sets is defined by the following equations:

i =M2z/2, fw2 =MZ5/2, (1)
Fpt =M, Fp2 =Mrpz, (2)
o= AMfa=MMzi/2,  T,=A,l,=MA,Z,/2. (3)

In the proposed meshing, as it was already mentioned,
the opposite lateral teeth profiles are drawn by two
different curves. Hence by the curves, shaping the
protruding teeth side, a continuous motion in the
driving direction of motion is being transmitted, and
by the other curves if being shaped the concave teeth
side.

- Protruded profiles. For their drawing an involute
curve is being used. In the co-ordinate system XOY
(Figure 2) the parametric equation of the involute
ME is of the type

Xi =—1; sin §;

Yi =I; COS d; }
where t; is the polar radius of the current point i of
the curve, and o; - its polar angle.

(4)
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From the theory of involute meshing [Litvin, 1968] it is
known that

Iy
cosa;
N =05mzcoscy.

ri:

(3)
(6)

q elongated
epicycloid

Xei = S
Figure 2. Geometry of teeth profiles

A

Taking into consideration equations (5) and (6) for the
parametric equations of the involute curve finally is

got and «; is the angular para-

X; =-0,5mzcosa, sind; /cosa; = X, (a;)

Y, =0,5mzcosa,, COsS; /cosa; =Y;(a;) } "

where ¢6,=inve,=tana,-¢;,

meter of the curve. At 7z=2; with equations (7) are
got the coordinates of the profile points ME of the
gear 1, and at z=12,- the profile M'E’ (Figure 1) of
the gear 2.

- Concave profiles. The concave profile of the
asymmetric teeth is got in the following way. To the

plane of the circle 1, of gear 2 (Figure 1) the point
C, is immovably connected. When this circle rolls
without friction on the circle r, point C, draws the
curve q in the plane of gear 1. Analogously the point

C. of the plane of the circle r,, draws the curve | in

the plane of gear 2.
By formation of the lantern meshing as theoretical
teeth profiles could be assumed:

a) point C,of gear 2, b) the curve q of gear 1. The
equations of the curve ( in the coordinate system
£0mn shown in Figure 2 are written in the following
way:

m . . L
§qj:?[(21+22)Sln(0j—/12228"’1(2—1(0,- +9;)]
2 (8)
m Z
Nq;= ?[(Zl+22)003(0j— 4z, COS(Z_(DJ' +@; )]
2
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As by drawing the curve q the rolling circles fyy and
lw2 (Figure 1) contact externally, and the drawing

point C, lies outside the circle I, the got curve (

is an elongated epicycloid.

In fact with gearings instead of the theoretical profiles
are used their equidistant curves (equally spaced
curves on the profile normals): a) the circle of a radius

rpo for gear 2, b) the curve MN for gear 1. The

equation of the curve MN in the same coordinate
system £Om in this case is written as follows:

m . 4
gj:E{(zl+zz)5|ngz)j—ﬂzzzsm(z—lcﬁj +(0j)_ \
2

[/1 sm( ¢J+¢) )-sing;]
- }
\/1—212 cos—1¢j+/1§
z

2

C))

——

m z
= ?{(Zl-‘rZz)COS(Dj -4, cos(z—l(p,- +0;) -
2

[l cos( ¢J+(p )—cosg;]
- }
\/1—2/12 cos—lgoj + 5
Z2

Out of the way of formation of the concave profile
MN of the tooth of gear 1 it follows that equations
(9) are equations of an equidistant curve of an
elongated epicycloid.

Analogously are found the equations of the concave
profile of gear 2. In this case the equations are got

directly from equations (9), after replacing z; withz,,

Z, with z;, A2 with A1 and r;2 with rSl.

In order to find the coordinates of the concave profile
in the same coordinate system, in which the protruded
profile is specified, it is necessary that the curve
MN rotates at an angle vy. Then after the respective
transformation between the coordinate systems £0n
and XOY finally the following equations for MN in

XOY are got
} (10)

X;=¢&;cosy+m;siny=X,;(p;)
Y;==&;siny+mn;cosy=Y,(p;)

In which the coordinates & and m; are preliminary

defined from equations (9). The value of the angle vy

is found in a numerical way. For the purpose from

equation

g2+ni=r2. (11)
Taking into consideration equations (6) and (9), the
parameter ©; for the coordinates of point M is
defined, afterwards from equation
y=arctg(&j/n;)
the angle vy is got.

(12)
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BAasic GEOMETRICAL DEPENDENCES

The basic geometrical dimensions of gears and the
parameters of the involute gearing are defined using
Figure 3. In the same figure are shown also the lines
of action, got as a geometric place of the contact
points of asymmetric gear profiles in the still plane.

The straight line AB, as it was mentioned, is the line
of action between the involute profiles. Its slope is

defined by the pressure anglea.y, and its end points
A and B coincide with the contact points of the
straight line N—N and the base circles tpand ty,. In
the proposed gearing the actual line AB of the
involute meshing coincides with the theoretical line of
action, by reason of that it has a maximum length.
The contact of the concave profiles with the teeth
crests (engaged in the lantern meshing) is realized
over two lines of action- AQ and BR . The line of
action AQ corresponds to the contact points between
the concave tooth profile of gear 1 and the lantern
circle (of a radiusrtpz ) of gear 2. Analogously, along
the line of action BR contact the concave profile of
gear 2 with the lantern circle (of a radiusp1) of gear
1. The end points Qand Rof the lines of lantern
action are defined from the place of the boundary
points Niand N;.

- Pitch circles. By realizing the gear meshing the pitch
circles, as centroids in the gearing, roll one over

another without sliding. The diameters dw1 and dw2
of these circlesa are defined by the equations
dwi=2rm=mz, dw2=2rw2=mz2 . (13)
- Line of involute meshing. Its length lag is equal to
the straight line AB. Taking into consideration the
rectangular trianglesPAO,, PBO, and equations

(13), for the straight line of action the following
formula is got

IABZIAP +|Bp =O,5m(zl+22)sinocw. (14)
- Pressure angles in the end points of the involute
curves. As it was already mentioned the place of the
end points e and e, of the involute profiles are
defined so that the circles of radii ryq and r., should
cross the end points B and A of the line of lantern
action. In this case from Figure 3 it is directly seen
that AB=eb; =eb, . Then from the rectangular
triangles enOy, €:0,0, and equations (14) and (6)
for the pressure angles o and oe; of the end
involute points the following formulas are got

| u+2 I u+2

tgoe=—o="""2 tgaLy , tg0ter == 2 tgaLy . (15)

Ib1 Z ) V4)

- Radii of the end points of the involutes. From the

triangles e;nO;, e:b,0; it follows that
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o =12 +13s,  Ta=qr} +1% . (16)
- Radii of the centers of the lantern circles. The

centers C; and C, of the lantern circles lie on the
normal of the involute curves, dropped from their end
points e, and e, . In order to define their position it is
necessary preliminary to find the radii of the lantern
circles. The calculation of rn and T2 is done by
numerical method, providing the simultaneous of the
lantern circle with the concave and protruded tooth
profile.

The value of the radii rq and rc; to the centers of the
lantern circles are defined by triangles CiO;

and C,b,0, , whence

I"c1=w[|’b21+(|AB—l'p1)2 s rczzﬁrb22+(IAB—rpg)2 . (17)

- Addendum circles. They are defined as distances
from the center of the corresponding gear to its most

distant tooth point. In the discussed case the radii I
and ., of the addendum circles are equal to the
corresponding straight lines O1a; and Oaz, i.e.

Figure 3. Asymmetric involute-lantern
meshing 2 =3, 2, =4

ral = rcl + rpl y I’az = I’cz + rp2 . (18)
- Internal circles. They are defined by the formulas
(19)

i1 =aw —Traz2, li2 =aw — lai,

where  aw =+ w2 =0,5m(z1 + 22)

is the centre distance of the gearing.

- Transverse contact ratio for the involute meshing.
As the contact between the involute profiles is
realized along the whole line of action, for the
transverse contact ratio the following formula is
effective

€o=(21+ 22)tgaw/2m. (20)

CONCLUSION

With the proposed asymmetric meshing is overcome
the shortcoming of the involute meshing, related to
the impossibility the meshed gears to have a small
teeth number.
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In the present paper is shown that in case asymmetric
involute-lantern meshing is used, with elongated
involute profiles, there appears the possibility to
provide continuous transmission of the motion in the
driving direction by a very small teeth number.
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