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 ABSTRACT: 

A new asymmetric meshing has been proposed, formed by spur gears with a very small number of teeth where the 
transverse contact ratio is bigger than one. The meshing in the general case where the gears have different number of 
teeth has been clarified. The main geometric parameters have been defined. The equations of the tooth profiles have 
been determined. Analytic dependencies for the geometric dimensions of the gears have been shown. The geometric 
parameters of the asymmetric gear drive have been found.  
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INTRODUCTION 
The use of spur involute gears for continuous 
transmission of rotary motion is limited in cases 
where teeth number  of the pinion (the small gear) 
is very small (z = 4,3,2,1). Then the transverse contact 
ratio  is smaller than one and after a specified gear 
pair goes out of meshing the next gear pair still has 
not meshed. Due to the small contact ratio the 
movement in the gear is interrupted. In practice this 
means that using the traditional involute meshing it is 
not possible to realize continuous transmission of 
motion from the one gear to the other one if gears 
have a very small teeth number. 
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If the gear meshing is involute and symmetric, in 
[Alipiev et al., 2009] it is proved that at 1>εα

4

 the 
smallest equal teeth number of the gears is е 

. This result, got in different ways, is well-
known also by the publications of [Kotelnikov, 1973], 
[Bulgakov, 1995] and [Kapelevich et al., 2002]. When 
the asymmetric involute meshing is used [Alipiev, 
2008] for the smallest equal teeth number of the 
gears, synthesized using the ”method of the realized 
potential” [Alipiev, 2009] it is got 

521 == zz

21 == zz . In this 
case the opposite lateral teeth profiles are drawn by 
different involute curves. Then the transverse contact 
ratio for the driving direction of movement is 1>εα , 

and for the non-driving direction - .  1^ <εα
Gears of a small teeth number find practical 
application mainly in gear pumps, gear compressors, 
kinematic transmissions, realizing large tooth ratios, 
some types of elevating mechanisms etc. Under equal 

other conditions (dimensions, weight, width of gears), 
the small teeth number leads to an increase of the 
volume of tooth spaces and an increase of the 
efficiency of the gear pump. Besides, by decreasing 
the teeth number of the pinion and keeping the tooth 
space of the gear, its tooth ratio increases. 
An object of survey in the present paper is the 
geometry of a new type of asymmetric meshing where 
the continuous transmission of motion ( 1>εα ) in the 
driving direction is realized by gears, having a very 
small teeth number. 
GENERAL DATA FOR THE MESHING 
The transverse contact ration in the driving direction 
of motion could be increased if an asymmetric meshing 
shown on Figure 1 [Alipiev, 2010] is used. In this case 
the asymmetric teeth of the meshed gears have a 
protruding and concave sides. Despite the geometric 
shape of each tooth of the generally different gears 1 
and 2 is simply defined by three successively connected 
curves. The first curve, shaping the protruding 

(driving) tooth side is the involute curve ME  ( . 
It is got as a trajectory of point 

)//EM
K on the straight line 

, when this straight line rolls on the respective 
base circle of a radius  or . The beginning of the 
first curve begins from the base circle, and its end 

ends in the point 

AB
1br 2br

E ( /E ). Using the second curve is 

shaped the tooth crest in the area from point ( E ( /E ) 

to point ( ). This curve is an arc of a circle (called 
lantern one) of a radius ( ), of a center  ( ) 

at a distance of ( ) from the gear center ( ).  

N /N
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Despite the center ( ) lies on the tangent to the 
base circle of the respective gear, descended from the 

end point 

1C 2C

E  ( /E ) of the involute curve.  
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Figure 1. Formation of involute-lantern meshing 
 

The third curve ( ) shapes the concave side of 
the asymmetric tooth. At gear 1 this curve  is got 
as a wrapping curve of the relative places which the 
tooth crest gets (the lantern circle of a radius ) 
from gear 2 in the plane of gear 1. Analogously the 

curve  of the tooth of gear 2 is got as a wrapping 
curve of the lantern circle of a radius   of gear 1. 

The end point ( ) of the third curve lies on the 
respective base circle ( ) and appears as an 
initial point for the involute profile of the next 
neighbouring tooth. 
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The provision of maximum overlap by meshing of the 
involute profiles is got due to their contact along the 
whole line of action . For this purpose the areas of 
the involute teeth profiles are chosen in this way that 

the кръговите trajectories 

AB

EB  and AE /  of their 

end points E  and /E  cross the end points B  and  

of the action line, and their initial points 

A
M  and /M  

lie on the corresponding base circles. 
The proposed gear meshing is called an „involute-
lantern meshing”, because in the driving direction of 
motion the conjugate profilers are the meshed 

involute curves ME  and //EM , and in the opposite 

direction mesh the arc  ( , respectively) of 
the lantern circle of the one gear of the concave 

profile ( , respectively) of the asymmetric 
tooth of the other gear. In other words, in the one 
direction of movement the meshing is involute and in 
the other one – lantern. Hence the lantern meshing is 
corrected since the centers  and  of the lanterns 
do not lie on the respective centroids of the gears 
when realizing the gear meshing, defined as pitch 
circles of radii  and . In contrast to the 
traditional lantern meshing where the tooth profile of 
the one gear is a circle and of the other one – an 
equidistant curve of a epicycloid, in the proposed 
meshing the non-involute teeth profile is a 
combination of two connected curves (concave profile 
and an arc of a circle). 
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EQUATION OF THE TEETH PROFILES 
The geometry of asymmetric gear profiles is fully 
determined if the following independent values (Figure 
1) are specified: teeth number  and  of both 
gears; the radii of the pitch circles  and ; the 
radii of the lantern circles and ; the radii and 

, on which are placed the centers of the lanterns; 
the pressure angle of the involute meshing . 

1z
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In order to provide expression in scale of all geometric 
dimensions, coming from the experience in the theory 
of the traditional involute meshing, еit is more 
rational to use another set of independent values, 
including: the gearing module ; teeth number  

and ; the coefficients  and  of the radii of the 

lantern circles, the coefficients  and  of the 
shape of the concave teeth profiles; the angle of 
involute meshing 

m
*
pr

1z
2z *

1pr
2λ

wα . In this set of parameters, , 

, , , 
1z

2z *
1pr *

2pr 1λ  and 2λ  сre dimensionless values, and 
the module  is a scale factor. The relation between 
the real linear dimensions and the corresponding 
dimensionless values from the above mentioned two 
sets is defined by the following equations: 

m

 2/1z1rw m= ,       , (1) 2/22 zw m=

m=

r
 ,        , (2) *

1pr1pr
m

m=

11z

*
22 pp rr

2/1rc 11rw λ=λ= ,     . (3) 2/222 zmλλ 2rw =2rc =
In the proposed meshing, as it was already mentioned, 
the opposite lateral teeth profiles are drawn by two 
different curves. Hence by the curves, shaping the 
protruding teeth side, a continuous motion in the 
driving direction of motion is being transmitted, and 
by the other curves if being shaped the concave teeth 
side.  
- Protruded profiles. For their drawing an involute 
curve is being used. In the co-ordinate system  
(Figure  2) the parametric equation of the involute 

XOY

ME  is of the type 
 iδiriX −= sin

i

 
(4) 

 iriY δ= cos  
where  is the polar radius of the current point i  of 
the curve,  and 

ir
iδ – its polar angle. 



 
 
From the theory of involute meshing [Litvin, 1968] it is 
known that  

  
i

b
i

rr
α

=
cos

 , (5) 

  .                   (6) wb zmr α= cos5,0
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Figure 2. Geometry of teeth profiles 
 

Taking into consideration equations (5) and (6) for the 
parametric equations of the involute curve finally is 
got and  is the angular para- iα
  )(cossincos5,0 iiiiwi XzmX ααδα =−=  
  )(coscoscos5,0 iiiiwi YzmY ααδα ==  
               where   iiii αααδ −== taninv , 

meter of the curve. At 1zz =  with equations (7) are 
got the coordinates of the profile points ME  of the 
gear 1, and at – the profile 2zz = // EM (Figure 1) of 
the gear 2. 
- Concave profiles. The concave profile of the 
asymmetric teeth is got in the following way.  To the 
plane of the circle  of gear 2 (Figure 1) the point 

 is immovably connected. When this circle rolls 
without friction on the circle  point  draws the 
curve  in the plane of gear 1. Analogously the point 

 of the plane of the circle  draws the curve l  in 
the plane of gear 2.  

2wr
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q

By formation of the lantern meshing as theoretical 
teeth profiles could be assumed:   
а) point of gear 2, b) the curve  of gear 1. The 
equations of the curve  in the coordinate system  

 shown in Figure 2 are written in the following 
way: 

2C q
q

ηξO

      )]sin(sin)[(
2 2

1
2221 jjjjq z

z
zzz

m ϕϕλϕξ +−+=  

      )]cos(cos)[(
2 2

1
2221 jjjjq z

z
zzz

m ϕϕλϕη +−+=  

 
 

 
As by drawing the curve  the rolling circles  and 

 (Figure 1) contact externally, and the drawing 

point  lies outside the circle , the got curve  q  
is an elongated epicycloid. 

q 1wr
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2C 1wr

In fact with gearings instead of the theoretical profiles 
are used their equidistant curves (equally spaced 
curves on the profile normals): а) the circle of a radius 

 for gear 2, b) the curve  for gear 1. The 
equation of the curve   in the same coordinate 
system 

2pr MN
MN

ηξO  in this case is written as follows: 

−+−+= )sin(sin){(
2 2

1
2221 jjjj z

z
zzz

m ϕϕλϕξ  

}

cos21

]sin)sin([2

2
2

2

1
2

2

1
2

*
2

λϕλ

ϕϕϕλ

+−

−+
−

j

jjjp

z

z

z

z
r

 

−+−+= )cos(cos){(
2 2

1
2221 jjjj z

z
zzz

m ϕϕλϕη  

}

cos21

]cos)cos([2

2
2

2

1
2

2

1
2

*
2

λϕλ

ϕϕϕλ

+−

−+
−

j

jjjp

z

z

z

z
r

 

Out of the way of formation of the concave profile 
 of the tooth of gear 1 it follows that equations 

(9) are equations of an equidistant curve of an 
elongated epicycloid. 

MN

(9) 

(7) 

Analogously are found the equations of the concave 
profile of gear 2. In this case the equations are got 
directly from equations (9), after replacing  with ,  

 with ,  

1z 2z

2z 1z 2λ  with 1λ   and   with . *
2pr *

pr 1
In order to find the coordinates of the concave profile 
in the same coordinate system, in which the protruded 
profile is specified, it is necessary that the curve 

rotates at an angle  Then after the respective 
transformation between the coordinate systems 
MN .γ

ηξO
MN

 
and  finally the following equations for  in 

 are got 
XOY

XOY
      )(sincos jjjjj XX ϕγηγξ =+=  

(10) 
      )(cossin jjjjj YY ϕγηγξ =+−=  

In which the coordinates  and  are preliminary 
defined from equations (9). The value of the angle γ  
is found in a numerical way. For the purpose from 
equation 

jξ jη

 . (11) 222
bjj r=η+ξ

Taking into consideration equations (6) and (9), the 
parameter jϕ  for the coordinates of point M  is 
defined, afterwards from equation  

(8) 

 )arctg( jj ηξ=γ  (12) 
the angle  is got. γ
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BASIC GEOMETRICAL DEPENDENCES 
The basic geometrical dimensions of gears and the 
parameters of the involute gearing are defined using 
Figure 3. In the same figure are shown also the lines 
of action, got as a geometric place of the contact 
points of asymmetric gear profiles in the still plane.  
 
The straight line , as it was mentioned, is the line 
of action between the involute profiles. Its slope is 
defined by the pressure angle , and its end points 

 and 

AB

wα
A B  coincide with the contact points of the 
straight line  and the base circles and . In 
the proposed gearing the actual line  of the 
involute meshing coincides with the theoretical line of 
action, by reason of that it has a maximum length. 
The contact of the concave profiles with the teeth 
crests (engaged in the lantern meshing) is realized 
over two lines of action – AQ  and 

NN− 1br
AB

2br

BR  . The line of 
action  corresponds to the contact points between 
the concave tooth profile of gear 1 and the lantern 
circle (of a radius ) of gear 2. Analogously, along 
the line of action 

AQ

2pr
BR  contact the concave profile of 

gear 2 with the lantern circle (of a radius ) of gear 
1. The end points Q and 

1pr
R of the lines of lantern 

action are defined from the place of the boundary 
points and . 1N 2N
- Pitch circles. By realizing the gear meshing the pitch 
circles, as centroids in the gearing, roll one over 
another without sliding. The diameters  and  
of these circlesа are defined by the equations  

1wd 2wd

 ,        . (13) 111 2 zmrd ww == 222 2 zmrd ww ==
- Line of involute meshing. Its length  is equal to 
the straight line . Taking into consideration the 
rectangular triangles ,   and equations 
(13), for the straight line of action the following 
formula is got  

ABl
AB

1PAO 2PBO

 . (14) wBPAPAB zzmlll α+=+= sin)(5,0 21

- Pressure angles in the end points of the involute 
curves. As it was already mentioned the place of the 
end points  and  of the involute profiles are 
defined so that the circles of radii  and  should 
cross the end points 

1e 2e
1er 2er

B  and  of the line of lantern 
action. In this case from Figure  3 it is directly seen 

that 

A

2b211 ebeAB == . Then from the rectangular 
triangles ,  and equations (14) and (6) 
for the pressure angles α  and  of the end 
involute points the following formulas are got 
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2 . (15) 

- Radii of the end points of the involutes. From the 
triangles , it follows that 111 Obe 222 Obe
 

  

 
22

1 1 ABe lrr b += ,      22
2 2 ABe lrr b += .   (16) 

- Radii of the centers of the lantern circles.  The 
centers  and  of the lantern circles lie on the 
normal of the involute curves, dropped from their end 
points  and . In order to define their position it is 
necessary preliminary to find the radii of the lantern 
circles. The calculation of  and   is done by 
numerical method, providing the simultaneous of the 
lantern circle with the concave and protruded tooth 
profile.  

1C

1e

2C
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1pr 2pr

The value of the radii  and  to the centers of the 
lantern circles are defined by triangles  
and , whence 

1cr 2cr
111 ObC

222 ObC

 2
1

2
11 )( pABbc rlrr −+= , 2

2
2
22 )( pABbc rlrr −+= .  (17) 

- Addendum circles. They are defined as distances 
from the center of the corresponding gear to its most 
distant tooth point. In the discussed case the radii  
and  of the addendum circles are equal to the 
corresponding straight lines  and , i.e. 

1ar
2ar

11aO 22aO
 

 
Figure 3. Asymmetric involute-lantern 

meshing 31 =z ,  42 =z
 

111 pca rrr += ,       222 pca rrr += . (18) 
- Internal circles. They are defined by the formulas 

 21 awf rar −= ,     , (19) 12 awf rar −=
where     )(5,0 2121 zzmrra www +=+=  
is the centre distance of the gearing. 
- Transverse contact ratio for the involute meshing. 
As the contact between the involute profiles is 
realized along the whole line of action, for the 
transverse contact ratio the following formula is 
effective 

 πα+=εα 2tg)( 21 wzz .                 (20) 
CONCLUSION 
With the proposed asymmetric meshing is overcome 
the shortcoming of the involute meshing, related to 
the impossibility the meshed gears to have a small 
teeth number.  
 



 
  

In the present paper is shown that in case asymmetric 
involute-lantern meshing is used, with elongated 
involute profiles, there appears the possibility to 
provide continuous transmission of the motion 
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