

1. Abdoullah NAMDAR

ENHANCEMENT SLOPE DESIGN USING MINERALOGY TREATMENT

^{1.} Islamic Azad University of Jolfa International Branch, Department of Civil Engineering, Jolfa, IRAN

ABSTRACT: The application of mixed soil by natural local material in slope construction is a novel technique. It is possibility of development new materials to satisfy slope safety requirements, in this regard mineralogy of different natural soils have been considered, and affect of mixed soil matrices in the identified slope behavior analyzed. The result of investigation revealed this method is fast, economic, trustable and easiest way of slope construction and it is due to understanding of soil mineralogy in geotechnical engineering, and the factor of safety has direct correlation with soil angle of friction and cohesive as well as unit weight.

KEYWORDS: Local Material, Numerical Analysis, New Material

Introduction

To increase safety of any structure and improve of soil foundation, experiments in laboratory and in situ applications along with computer modeling could lead to find economical constructed slope, and also it is standard method of starting construction activities for better understanding of material characteristics in the body of earth structure.

It has been reported on a generic earth fill dam model and investigates, probabilistically, downstream and upstream slope stability, as significant limit states governing the long-term performance. Specific variables that define failure modes are identified and their probabilistic models defined [1]. There is an investigation on the south west area of Cyprus which has a long history of slope instability problems. The location and extent of these landslides has been influenced by ground morphology, geological structure and the presence of weak rocks and cohesive soils [2]. It is presented slope and embankment analysis by some methods including Finite Element (FE) and Limit Equilibrium (LE) were used for evaluation failed slopes at Talaimai location of the Rajshahi City [3]. There is a scientific research on determine the mechanism of internal soil erosion resistance to soil slope instability. A laboratory study has been carried out to characterize the soil internal erosion resistance to slope instability due to rainwater infiltration and the effect of percentage of course to fine-grained soils composition [4]. It has been studied of the development in geotechnical engineering and the advancement in the earth moving machineries enabled the construction of high earth and rock-fill dams. The flexibility of the materials provides excellent seismic stability to the structure. It could be evaluating the stability analysis of zoned dam with different materials and hydraulic properties of the construction materials [5]. A study has been conducted, it is revealed slope instability causing

landslides, and a major geologic hazard, and it is a risk common to most regions. Among all categories of landslides, shallow slope failures which affect many hill slopes and earthwork projects and pose the most costly maintenance problem, to overcome to these problems Live Pole technique for soil improvement in shallow slope failures has been suggested [6]. The experiments are conducted in the Geo-technical Engineering Laboratory of S. J. College of Engineering, Mysore. In the present experiments, several models have been developed to improve red soil mechanical characteristics. It is to study slope construction from local and economical materials in the Mysore city of India, the six types of soils along with the two types of gravel and sand have been selected to evaluation of characteristics of 31 mixed soils under loose dry condition and out of these 5 models as per their characteristics have been selected for future investigation.

METHODOLOGY AND EXPERIMENTS

It is quite clear a mixed soil characteristic is totally different from individual soil. Earth slopes are formed for railway formation, highway embankment, earth dam, canal banks and many earth structures. In slope construction from mixed soil for increasing slope stability, employee of different types of soil with proper percentage is best option, in this regard 31 mixed soil types from red plastic soil and black, green, dark brown, yellow and light brown non plastic soils, sand, and two types of gravels 2 mm, 4.75 mm developed, and also from previous investigation (Table 1) safe bearing capacity, angle of friction, unit weight and cohesive of mixed soils sample for computerize model have been used, the Geo-Slope software in identification of models behavior employed and the result of these modeling research work by interpretation of mixed soil types characteristics evaluated. And the XRD results of six soil samples used as starting materials for mixture.

	i abie 1. Mixea soii modeis [7]								
SI. No	% of Red Soil	% of Sand	% of Gravel 4.75 mm	% of Gravel 2 mm	% of Black Soil	% of Green Soil	% of Dark Brown Soil	% of Yellow Soil	% of Light Brown Soil
1.	100	0	0	0	0	0	0	0	0
2.	55	45	0	0	0	0	0	0	0
	55	45 0	45	0	0	0	0	0	0
3. 4.	55 55 55 55 55	0	0	45	0	0	0	0	0
5. 6.	55	15	15	15	0	0	0	0	0
6.	55	0	0	0	45	0	0	0	0
<i>7</i> .	55	0	0	0	0	45	0	0	0
8.	55	0	0	0	0	0	45	0	0
9.	55	0	0	0	0	0	0	45	0
10.	90 80	0	0	0	2	2	2	2	2 4 6 8
11.	80	0	0	0	4 6 8	4	<u>4</u> 6	4	4
12.	70 60	0	0	0	6	4 6 8	6	4 6 8	6
13.	60	0	0	0		8	8	8	8
12. 13. 14. 15.	50 70	0	0	0	10	10	10	10	10
15.	70	0	0	0	10	10	10	0	0
16.	70	0	0	0	10	10	0	10	0
17. 18.	70	0	0	0	10	10	0	0	10
18.	70	0	0	0	10	0	10	10	0
19. 20.	70	0	0	0	10	0	10	0	10
	70	0	0	0	10	0	0	10	10
21.	70	0	0	0	15	15	0	0	0
22.	70	0	0	0	15	0	15	0	0
23. 24. 25. 26.	70	0	0	0	0	0	0	15	15 0
24.	70	0	0	0	15	0	0	15	
25.	70	0	0	0	15	0	0	0	15
26.	70	0	0	0	15 0	15	15	0	15 0 0
27. 28.	70	0	0	0	0	15 15 15	0	15	
28.	70	0	0	0	0	15	0	0	15
29.	70	0	0	0	0	0	15	15	0
30.	70 55	0	0	0	0	0	15 0	0	15
31.	55	0	0	0	0	0	0	0	45

RESULTS AND DISCUSSION

One of the ways in overcoming in the shortage of land in the urban area is improvement of soil properties by grouting, compaction, excavation, replacement of new soil and mitigation of soil by nailing etc, those this method have been adopted by the geotechnical engineering but mixing soil method from local material is new technique could be improve if knowledge of this method properly developed. To feasible evaluation of mixed soil technique in slope construction, four mixed soil types those have better than red plastic soil characteristics to construction of slope has been selected (table 8), it is for application analysis of mixed soil capability in construction industry. At the time of earthquake, soil liquefaction results appeared in the form of ground failure, differential settlements, slides, soil foundation deformation, and reduction of soil bearing capacity. It is a major cause of earth structure collapse [Fig 1].

The peaks have been indexed and minerals present in the soils were identified by use of the standard D-spacing and mineral intensity (Table 2-7 and Fig 2.a-f). The important minerals present in the soils are quartz, muscovite, biotite, carbonates and fluorapatite. Clay minerals like illite, saponite, sauconite, pyrophyllite,

orthochamosite, brucite, clinochlore, nacrite, odinite, amesite, chamosite, cancrisilite, chamosite and orthochamosite were also present as minor constituents, only the red soil has considerable amount of clay minerals, where as the remaining other soils have meager concentrations. The mixed soil model mineralogy and morphology are the main factors at play in level of soil bearing capacity, foundation strength and stress sustainability [7].

Table 3 indicated of 31 mixed soils characteristics which are soil moisture content, angle of friction, cohesive, unit weight and safe bearing capacity and table 9 mentioned of slope characteristics constructed from mixed soil, these are factors of safety, total resistance moment, total activating moment, total resisting force and total activating force. This novel technique of soil mixing could successfully applied in some areas of urban in improvement of structure foundation and earth structure as well as seismic mitigation. The slope from mixed soil designed to satisfy bearing capacity and economic criteria and achieving of best factor of safety.

The results of these computerize modeling [Table 4 and Fig 3-4] revealed soil angle of friction, cohesive and unit weight have positive correlation with total activating force and moment, it is due to mechanical soil characteristics, it appeared in earth structure construction and could be accurate verify by finite element analysis, this is led to understanding of slope stability requirement. One of the methods in slope stability improvement is application of mixed soil technique, it is quite clear by this technique in slope design and analysis easy can achieve to the economic and fast slope construction whit acceptable factor of safety.

In the soil composite, angle of friction with the cohesive and unit weight of the soil could be equality important in the slope stability, this is occur due to slope shape, soil nature and slope load sustainability as well as pore water pressure characteristics and all these factors came from soil mineralogy and morphology. There is good agreement revealed between the results of mixed soil and slope construction modeling due to understanding soil mixed behavior, and the results find slope displacement, deformation, collapse, settlement and level of pore water pressure could be controlled if mixed soil technique properly identified and applied. Soil mixed has a significant effect on improvement of slope bearing capacity, if slope is very sensitive in settlement, in this case application of mixed soil method could mitigate slope settlement, and more complex and precise slope behaviors of the soil could be analysis. Therefore, the effects of the factor of safety can be taken into consideration as part of the

analysis. The effect of soil characteristics and slope geometry on the stability of a slope can also be studied when the all parameters is combined.

Figure 1. Landslide at Sau Mau Ping in 1976 [8] Table 2.a XRD data of red soil [7].

				L' 1	
Peak No	2theta	Flex Width	D-Value	Intensity	I/I _o
1	19.96	0.471	4.4447	742	26
2	20.92	0.306	4.2428	739	26
3	22.10	0.329	4.0189	350	12
4	26.70	0.329	3.3360	2919	100
5	28.04	0.329	3.1796	864	30
6	28.76	0.353	3.1016	331	12
7	33.26	0.353	2.6915	333	12
8	35.02	0.400	2.5602	340	12
9	35.82	0.424	2.5048	464	16
10	36.60	0.306	2.4532	465	16
11	49.66	0.376	1.8343	405	14
12	50.22	0.353	1.8152	846	29

Table 2.b XRD data of black soil [7].

Peak No	2theta	Flex Width	D-Value	Intensity	I/I _o
1	20.800	0.282	4.2670	2297	25
2	26.580	0.282	3.3508	9312	100
3	27.80	0.259	3.1974	668	8
4	29.320	0.306	3.0436	676	8
5	36.500	0.306	2.4597	699	8
6	39.400	0.353	2.2851	672	8
7	40.260	0.306	2.2382	429	5
8	42.400	0.329	2.1301	806	9
9	50.080	0.329	1.8199	1316	15

Table 2.c XRD data of yellow soil [7].

rubic 2.67(10 data of yellow son [7].							
Peak No	2theta	Flex Width	D-Value	Intensity	I/I _o		
1	9.500	0.376	9.3020	891	7		
2	12.160	0.400	7.2725	1033	8		
3	18.740	0.376	4.7312	573	5		
4	20.900	0.400	4.2468	3549	27		
5	24.400	0.353	3.6450	887	7		
6	26.680	0.376	3.3385	13545	100		
7	28.660	0.376	3.1122	895	7		
8	32.660	0.376	2.7396	7551	56		
9	35.880	0.400	2.5007	1336	10		
10	36.600	0.376	2.4532	1082	8		
11	39.500	0.400	2.2795	796	6		
12	43.000	0.376	2.1017	3763	28		
13	46.840	0.400	1.9380	1131	9		
14	50.180	0.400	1.8165	1327	10		

Table 2.d XRD data of light brown soil [7].

			,		
Peak No	2theta	Flex Width	D-Value	Intensity	I/I _o
1	19.880	0.447	4.4624	567	10
2	20.880	0.282	4.2509	1201	21
3	22.080	0.259	4.0225	646	11
4	26.680	0.282	3.3385	5937	100
5	27.420	0.282	3.2500	801	14
6	27.980	0.306	3.1862	2708	46
7	36.600	0.282	2.4532	658	12
8	41.780	0.353	2.1602	512	9
9	50.160	0.306	1.8172	697	12

Table 2.e XRD data of dark brown soil [7].

Peak No	2theta	Flex Width	D-Value	Intensity	I/I _o
1	9.460	0.424	9.3412	746	29
2	10.520	0.376	8.4023	1147	44
3	18.440	0.400	4.8075	735	28
4	24.660	0.400	3.6072	1770	67
5	25.300	0.353	3.5173	525	20
6	26.400	0.424	3.3732	663	26
7	27.220	0.376	3.2734	617	24
8	28.520	0.376	3.1271	1882	72
9	30.960	0.424	2.8860	2646	100
10	35.260	0.400	2.5433	1090	42

Table 2.f XRD data of dark green soil [7].

	,		, 8		
Peak No	2theta	Flex Width	D-Value	Intensity	I/I _o
1	20.880	0.306	4.2509	433	15
2	21.960	0.329	4.0442	1138	40
3	23.680	0.447	3.7542	683	24
4	24.380	0.353	3.6480	567	20
5	26.620	0.353	3.3459	2573	89
6	27.880	0.565	3.1974	2910	100
7	29.780	0.447	2.9976	1214	42
8	30.360	0.353	2.9417	1027	36
9	30.900	0.329	2.8915	489	30
10	35.440	0.353	2.5308	1301	45
11	42.220	0.612	2.1387	529	19
12	51.480	0.329	1.7737	419	15

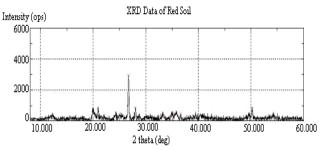


Fig.2.a. XRD Data of Red Soil [7]

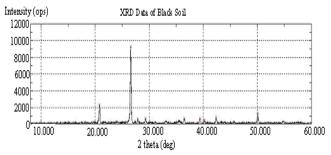


Fig.2.b. XRD Data of Black Soil [7]

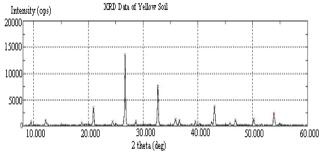


Fig.2.c. XRD Data of Yellow Soil [7]

2012. Fascicule 2 [April–June]

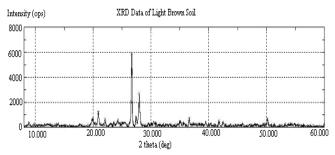


Fig.2.d. XRD Data of Light Brown Soil [7]

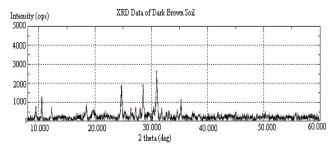


Fig.2.e. XRD Data of Dark Brown Soil [7]

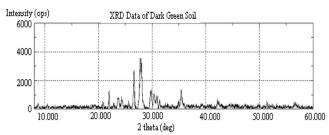


Fig. 2.f. XRD Data of Dark Green Soil [7]
Table 3 Experiments Results When Soil Is in
Loose 0% Moisture Condition [9]

_	2003C 0% Moisture Condition [9]						
SI. No	Model No	Zero % Moisture Content	(KN/m³)	Ф Degree	C (KN/m²)		
1	1	0	11.808	38	0 10 14 0		
2	2	0	12.54	35	10		
3	3	0	13.93	36.5	14		
2 3 4 5 6	2 3 4 5 6 7 8	0	12.71	42	0		
5	5	0	13.32	42	0		
6	6	0	11.5	37	12		
7 8	7	0	12.11	36	0		
8	8	0	13.26	32	0		
9	9	0	11.38	35	0		
10	10	0	10.29	37	4		
11	11	0	10.9	36	0		
12	12	0	12.35	33	0		
13	13	0	11.5	35	0		
13 14 15 16 17 18	13 14 15 16	0	12.72	36	0		
15	15	0	11.5	35	0		
16	16	0	11.93	33	0		
17	17 18	0	12	35	0		
18	18	0	12.11	37	0		
19	19 20	0	11.02	35	0		
19	20	0	11.51	31	12		
21 22	21	0	12.42	35	0 8		
22	22	0	11.81	35	8		
23	23	0	13.32	34.5	0		
23 24 25 26	21 22 23 24 25 26	0	11.51	33	0		
25	25	0	12.72	34	0		
26	26	0	14.05	34	0		
27 28	27 28	0	12.11	32.5	0		
28	28	0	12.72	37	0		
29	29	0	12.72	34	6		
29 30 31	29 30 31	0	12.54 13.93 12.71 13.32 11.5 12.11 13.26 11.38 10.29 10.9 12.35 11.5 12.72 11.5 11.93 12 12.11 11.02 11.51 12.42 11.81 13.32 11.51 12.72 14.05 12.11 12.72 12.72 13.02 11.2	38 35 36.5 42 42 37 36 32 35 37 36 33 35 36 35 37 35 31 35 35 37 35 31 35 37 37 37 37 37 37 38 39 39 39 39 39 39 39 39 39 39	0		
31	31	0	11.2	37	0		

Table 4. Analytical Result of Slopes in Morgenstern- Price Method

Model No	Factor of Safety	Total volume (M³)	Total Mass (Kg)	Total Resistance Moment (KN. M)	Total Activating Moment(KN. M)	Total Resisting Force (KN)	Total Activating Force (KN)
3	1.939	234.44	3265.7	45887	23664	1933	999.37
6	1.844	275.44	3171.3	42075	22821	1689.3	916.44
5	1.71	154.64	2059.8	28084	16426	1241.6	728.59
4	1.689	154.64	1965.4	26471	15674	1169.2	694.81
1	1.435	154.64	1826	20899	14562	922	644.85

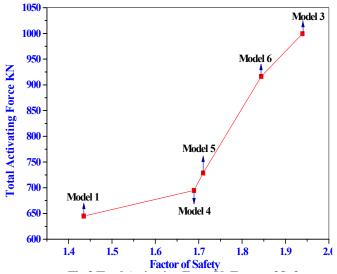


Figure 3. Total activating force vs. Factor of safety

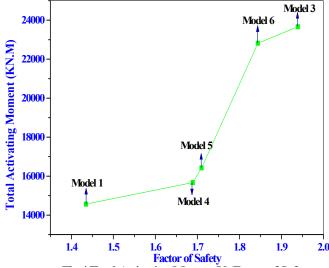


Figure 4. Total activating moment vs. Factor of safety

CONCLUSIONS

- ☐ The structure modeling is a step of any construction activities and it is fast, economic, trustable and easiest way of slope stability evaluation, and it is achieved if soil mixture mineralogy identified
- Soil angle of friction, cohesive and unit weight have positive correlation with slope factor of safety

ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering

- □ To achieving acceptable factor of safety, it is needed present of high level of soil angle of friction and cohesive as well as unit weight
- □ If the soil angle of friction, cohesive and unit weight increased simultaneously it will have best influence in controlling slope factor of safety, if any of these three be weak could not be observed acceptable of factor of safety, it could be suggested if a mixed soil is weak in cohesion to improved of that should amended with pure clay mineral, and to increase of angle of friction could use of angular soil in development of mixed soil and to modification of unite weight could use of soil consist of heavy mineral

Nomenclature

 Φ [°] = Friction Angle C [kN/m2] = Soil Cohesivity

OMC % = Optimum Moisture Content %

SBC [kN/m2] = Safe Bearing Capacity

γ [kN/m3] = Unit Weight F = Safety Factor = 3

REFERENCES

[1.] Marie-Christine Preziosi (2008), Probabilistic assessment of small earth-fill dams, Dams and Reservoirs, 18, No. 1, 27–30, UK

- [2.] J Hadjigeorgiou et al (2006), A road embankment failure near pentalia in Southwest Cyprus, International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering, The South African Institute of Mining and Metallurgy
- [3.] Y. A. Khan (2009), Mechanisms and causes of embankment slope failure at Talaimari location of the Rajshahi City Protection Embankment, Bangladesh, Geophysical Research Abstracts, Vol. 11, EGU2009-581
- [4.] Fauzilah Ismail et al (2008), A Study on the Mechanism of Internal Erosion Resistance to Soil Slope Instability, EJGE, Vol. 13, Bund. A
- [5.] Rajesh Khanna et al (2008), Slope Stability Analysis of Earth and Rock-fill Dam by Numerical Modeling, The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India
- [6.] Sasan Mafian (2009), Live Poles for Slope Stabilization in the Tropical Environment, EJGE, Vol. 14, Bund. G
- [7.] Abdoullah Namdar (2009), Identification of Mixed Soil Characteristics by Application of Laboratory Test, EJGE, Vol. 14, Bund. B, USA
- [8.] http://150.217.73.85/wlfpdf/14 Chan.pdf
- [9.] Abdoullah Namdar et al (2009), Bearing and liquefaction evaluation of mixed soils, Ingenierías, Vol. XII, No. 44, Mexico

ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERING

ISSN: 2067-3809 [CD-Rom, online]

copyright © UNIVERSITY POLITEHNICA TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA, 5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA http://acta.fih.upt.ro

2012. Fascicule 2 [April–June]