ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering

Tome V (Year 2012). FASCICULE 2 [April-June]. ISSN 2067-3809

" Mihaela OSACI, * Adela-Diana BERDIE, > Ana-Daniela CRISTEA

CONTROL TOOLS FOR OPTIMIZING ABAP CODES

2 UNIVERSITY ,,POLITEHNICA” TIMISOARA, FACULTY ENGINEERING HUNEDOARA, ROMANIA

> CELLENT AG STUTTGART, GERMANY

ABSTRACT: Given current trends to computerized economic, integrated design development provides premises for a
computer-based business processes in order to accommodate to current climate and increase competitiveness. This paper is
a study on how to use control tools in ABAP SAP NetWeaver Application Server to perform the best code optimizing. In

appropriate case studies, we will refer to the ABAP Runtime Analysis, Memory Analysis, and STAD transaction.

KEYWORDS: software integrated system, runtime analysis, memory analysis, business transaction analysis

INTRODUCTION

SAP Netweaver Application Server ABAP is the SAP
Netweaver Application Server from which applications
can be programmed in ABAP [1], [2]. It provides the
execution environment is a virtual machine ABAP to
ABAP programs independent of hardware, operating
system and database system. ABAP Workbench is
used as the runtime environment for the development
of applications. SAP Netweaver Application Server
ABAP, client-server system 3-thier, can be used by
people or other software. Users can access people
using user interfaces which are available via a web
browser (using ICM interface) or SAP GUI installed on
desktop client computers. Software components can
access the connection Remote Function Call protocol
RCF (RCF) properly using RFC interface.

Native language of an ABAP system is a generation-4
programming language (4GL) that supports both
procedural model and object oriented programming.
Persistent data stored in relational databases and
ABAP programs accessed through Open SQL
instructions. Open SQL consists of the DML (Data
Manipulation Lan e) standard SQL lan e.

CODE TESTING ToOL: ABAP OBJECTS RUNTIME ANALYSIS
(SE30 TRANSACTION)

Running time is important information relative to the
performance of code sequences [3]. The ABAP
Runtime Analysis tool can analyze the execution time
affecting the performance of ABAP software. The
ABAP Runtime Analysis can test, for example,
programs, methods and functional modules (global
subroutines). Test results can be saved in graphic file
server applications. These files are available to achieve
the necessary optimizations. ABAP Runtime Analysis
tool can be executed using transaction SE30 launch —
Figure 1.

For example, we should test the
YALLS ARRAY_FETCH _DATA REF software that uses
array fetch reading technology in an internal table of
data from a database table, access to data in internal

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

table is made by reference variable time. We run the
software from this window - Fig. 1. After returning
from the execution window, the Runtime Analysis
window turns as described in Figure 2 and it allows
performance evaluation. Test program results are
presented in Figure 3.

PR Tins & Tricks

heasurament
CC@ Reliability of Time Values
Short Descriptn |array fatch |

In Cialog In Parallel Session
O Transaction =3 Switch OniOf |
® Program WALLS_ARRAY_FETCH_DATH_REF |
C Function module | Schedule
& Execute =3 For User/Service |
Measurement Restrictions
Wariant =Ll oerFauLT | From user BLCUSER
] % P s [

Figure 1. Main interface ABAP runtime analysis tool

Meagsurement
CC@ Reliability of Time Yalues
Short Descriptn

|arrav fetch |

In Dialog

O Transaction
@ Program

O Function module Schedule

(e Execute I I3

Measurement Restrictions
Varlant 8 DEFALLT

Cllsd sl alm

In Parallel Session

= Suwitch ONJOTT]

WALLE_ARRAY_FETCH_DATA_REF |

For UserService |

BCUSER

| Framuser

Petformance Data File

Application YALLS_ARRAY_FETCH_DATA_REF

test ARRAY_FETCH_DATA_REF |
NMeasurement date 83 g3 261122 45 86 |

File size in KB 38|

s Evaluate 55 Othet Fila... =

Shart description

File Info... @ oeete]

Figure 2. ABAP Runtime analysis interface for data analysis

Frogram YALLS_ARRAY_FETCH_DATA_REF = standard table a1l ar Tine
User BCUSER Date

00:01:14
12.06.10

Execution time in microseconds:

Apap | —
Database ||
Systen . Il J Il | Il Il Il } Il |
T T T T T T T T T 1
[:}4 50% 100%

92.421 = 88,1%
6.055 = 5.8%
6.422 = 6,1%

104.898 = 100,0%

Figure 3. YALLS_ARRAY FETCH DATA REF
software test results

107

ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering

We can now read the ABAP instructions runtime time
in microseconds, as well as the time to work with the
database and runtime time operating system.

An analysis of the software memory can be used by
the Debugging process. We should use the Replace
Tool from the Toolbar and choose to receive the
Special Tool - Figure 4, and then we choose Memory
Analysis option to analyze it in terms of memory used

in the software code.
J& Mew Tool

= [J Toals
=~ [J Standard Tools
B Call Stack
& variable Fast Display
& Breakpoints
=] Source Code (Edit Control
=~ [J Data Ohjects
@ Ohject
Table
oo Structure
o Single Field
@& Data Explarer
= {3 Special Tools
o5 Web Dynpro
Loaded Programs {(Global Data)

[B@] Screen Analysis
& DiffTool
% System Areas {Internal)

Figure 4. Memory analysis by debbuger
Figure 5 describes the memory test results of codes in
YALLS ARRAY FETCH DATA REF software.

P Memaory Analysis

4 Zg Memory Sizes (in Bytes)
24| Internal Session

Allocated

Used

5.224 6496
4.349. 352

Special Memary Areas

Heap a

Rall g.112
Shart 8. B53
FPaging 172.032

Figure 5. Memory analysis results
In Figure 5, memory size is specified in bytes. Special
areas of memory are: Heap Memory -private memory
reserved for runtime processes of the Application
Server; Roll Memory is reserved for copying data
sources such as roll file, if the runtime processes of
application server change; Short memory - memory
for storing intermediate results resulting from the use
of such a screen is automatically cleaned after each

dialog step.
STAD TRANSACTION (BUSINESS TRANSACTION ANALYSIS)

Business Transactions Analysis calculates the system
resource usdge of individual transactions for ABAP
systems and provides a detailed analysis of a
transaction and the dialog steps. The selection criteria
include user, transaction, program, task type, start
date, and start time. [1]

108

SAP Workload: Business Transaction Analysis

Select statistical records ifar the whole R/2 System)

Display mode
[=] Show all statistic records, sorted by time
ﬂ Show all records, grouped by business transaction
ﬂ Show business transaction sums

Read interval

Date hi2.04.20811

Time 10:26:00 Length 08:18:608
Filter parameter

Client Resp.time == ms

User - DB reqtime == ms

Transaction CPU time == ms

Frogram Bytes req == kB

Tasktype DB changes ==

Tools
Include statistics from memary
Oinclude application statistics

Additional options

Figure 6. STAD transaction
This transaction enables us to set up the system
through several variants - Figure 6: displaying single
records as they are displayed in Transaction STAD,
displaying the single records grouped by business
transaction, or displaying business transaction or job
totals.
The system always analyzes a time frame that is larger
than the reading time, because the start date and
time define the beginning of the period to be analyzed
and the read time defines the duration of that period.
By choosing Include statistics from memory, the
system analyzes statistical records that were not yet
written to the statistic file, but which are contained in
the statistics buffer. To analyze very recent time
periods, is necessary to include the buffered records.
With Server selection we can analyze only the
statistics of specific servers. With Additional options
we can influence the time frame mentioned above or
the wait time for RFC’s to be analyzed if we do not
receive data from a server that was called as a result
of RFC problems, or busy application servers that
increase waiting time.
Testing it by STAD transactions for a transactional
operation, the job name is SDOE_LOAD - Figure 7; the
response time results, time in WP’s, Waiting time, CPU
time, DB req time, Memory used, and transfered
kBytes.

$AP Workloze: Business Transation Analysis

| @ 8 £ 401 ¥ Doy me B Bovves [Goowsneny vt)

Systen: B2
Anaysed ting: 15,
Dsplay mod: Bu:

0 Nnber of RFCs vrich vesponded (witheut errors): 1 { 1]
7:40:00 - 15.06.2098 [13:00:80
i surs

Sterted Server Steg Typ Transection or jolmene szr Response [Time in (Wit tine |OU tine (DB req. (W elapsedfMemory | Tremsfered)

time (ws) | WPs fns) | (1) s [tine (us) [ties (us) [used (KB) |KBytes

b L T
T i

B

Figure 7. Job name SDOE_LOAD from STAD

2012. Fascicule 2 [April-June]

EFFICIENCY INCREASE IN ABAP IN DATABASE TABLES

We will study various techniques [4], [5], [6] for
processing data in a table. We suggest reading the
records in a table according to selection criteria
introduced by a screen with a single parameter
selection and display records after processing a classic
GU SAP list.

To read the data using two techniques: SELECT ... END
SELECT cycle and ARRAY FETCH technique. SELECT ...
END SELECT cycle requires sequential reading of
information and attaching the internal table line by
line. ARRAY FETCH technique involves reading the
entire contents in an internal table. Data from internal
table can be accessed in several ways: work area, field-
symbol (label field) and variable time reference. The
tests we perform at 10, 40, 70 and 100 table entries,
watching the way ABAP instructions runtime, as well
as runtime time of the database performance and
total number of records in the table varies.

For the group of codes, we test two data reading
techniques in database table, “select ... end select”
and “array fetch”; and in case of the array fetch
technigue we look for effectiveness of three means of
access to data from internal table: work area (a line-
table type time object), every reference variable or
field-symbols, and the results are described in Figure
8-10.

99 Yalls codes group
98 x | (ABAP)
" 97 4 > —&—yalls_array_fet
£ ‘. ch_data_ref
t _ 96 4 . _data_
S %
a T 95 —l—yalls_array_fet
S 3 ch_field_symb
g § o g
.8 g3 4 yalls_array_fet
=& ch_table (wa)
o 92 _
5
< 91 « yalls_select_en
dselect_table
2 (wa)
89 L L L
10 40 70 100 Number of records

Figure 8. ABAP Runtime instructions depending on the
number of records in the database table
In Figure 6, we describe the instructions execution of a
lower ABAP when runtime with symbols for accessing
field data from internal table. In this case, we use only
one data object where we rewrite and process
sequential values from the internal table. ABAP
instructions runtime increases along with the number
of records, because in all cases internal table reading
and processing is done sequentially in a “loop ... end
loop” cycle. The increase is more pronounced when
using “select ... end select” technique that reads one
line of the table and attaches it to the internal table. If
case of array fetch technology data is read “globally".

ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering

In terms of database runtime, we can see - in Figure 7 -
that it increases along with the number of records,
which are almost similar in all three cases in which we
used the array fetch technique, therefore the increase
was more obvious when using “select ... end select”
technique, with a slightly larger number of records.

8 Yalls group codes (BD)

75 9

b —&—yalls_array_fetch_
_§ = 7 | data_ref
€T
S
: § —l—yalls_array_fetch_
T 865 ield_symb
$ 38 field_sym
v 5
~§ E 6 ‘Ti?‘ yalls_array_fetch_
3 table (wa)
&

55 1 yalls_select_endse

lect_table (wa)
5 L] L]

10 40 70 100 Number of records

Figure 9. Runtime database records
the number of database table

114 Yalls codes group
(total runtime)

—&—yalls_array_fetch_

110 < data_ref

108 < /

—l—yalls_array_fetch_

Total runtime (microseconds)

field_symb
106 /
L———I/ yalls_array_fetch_
104 table (wa)
102 yalls_select_endse
lect_table (wa)
100 T

10 40 70 100 Number of records

Figure 10. Total runtime of the software according to the

number of records in the database table
Figure 8 reinforces the idea that using array fetch
technology and accessing data from the internal table
by the symbol field is a better solution over time. In
terms of memory consumption, an analysis of codes
from the yalls group revealed the results presented in
Figures 11-13.

P Memory Analysis

4 B Memary Sizes (in Bytes)

28 | Internal Session

Allacated
Used

5.224 G696
4,349,352

Special Memaory Areas

Heap o]

Rall a.112
Short 8.063
FPaging 172.032

Figure 11. Yalls_array _fetch data_ref Memory analysis

2012. Fascicule 2 [April-June] 109

ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering

P Memory Analysis
4 B Memory Sizes (in Bytes)
28| Internal Session
Allocated 5.224 B96
Used 4.349 04@

Special Memory Areas

Heap e}

Roll 8.112
Short 8.063
Faging 172.032

Figure 12. Yalls_array fetch field symbols
Memory analysis
b Mermory Analysis
4 B Memary Sizes (in Bytes)
28 Internal Session
Allocated 5,224 696
Used 4 426 512

Special Memory Areas

Heap o

Raoll 8.112
Short B 063
Paging 172.0832

Figure 13. Yalls_array fetch_table (wa)
Memory analysis

And speaking of memory used, array fetch technique
with accessing data from internal table with the
symbol field is the most effective.

CONCLUSIONS

This paper collects several studies referring to the
involvement of the control tools, such as ABAP
Runtime Analysis and Memory Analysis in order to
analyze all methods to optimize data processing codes
of the level of persistence on SAP Netweaver 2004’s,
ABAP Application Server. The analysis performed |

ACTATechnicaCONBISS o gcicuileg

=y
showed that the most effective reading data % ECDC oBE PEeE ;‘;’é
technique from one data table is array fetch. As far as 2 585 §§'
dccess to data in internal table is concerned, it is E g %ﬁ
eff:c;em? to 'use the symbol field both in ter'ms of é% CORVINIENSIS g §§
processing time and memory used. These studies can gg @@| sy or |90 3
be of great use for an efficient coding of this &= 22%8 Tg
integrated system which is also an ERP system g (HGGE asa 0008 %

(Enterprise Resource Planning). AMoIse] SR BATAIVIS S
REFERENCES

[1.] SAP Help Portal (http://help.sap.com),

[2.] SAP Developer Network (http://sdn.sap.com),
[3.] Horst Keller, Wolf Hagen Thummel, Official ABAP

Programming Guidelines, Galileo Press, 2010

ACTA TECHNICA CORVINIENSIS - BULLETIN of ENGINEERING

[4.] Horst Keller, Sascha Krtiger, ABAP Objects, SAP Press, ISSN: 2067-3809 [CD-Rom, online]
Bonn Germany, 2007 .
[5.] Ulrich Gellert, Ana Daniela Cristea, Web Dynpro ABAP copyright © UNIVERSITY POLITEHNICA TIMISOARA,

FACULTY OF ENGINEERING HUNEDOARA,
5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA
http://acta.fih.upt.ro

for Practitioners, Springer Publishing House, 2010

[6.] Cristea Ana Daniela, Berdie Adela, Osaci Mihaela,
Working With ABAP Persistent Data, ISIRR Hunedoara,
23-24 April, 2009, Proceedings Conference, CD Edition

110 2012. Fascicule 2 [April-June]

