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ABSTRACT: This paper investigates a study of the flow of a viscous incompressible fluid 
along a heated vertical porous plate, taking into account the variation of the viscosity 
and thermal diffusivity in the presence of the magnetic field. The governing partial 
differential equations of the flow field are transformed into ordinary differential 
equations by means of similarity transformation. The resultant equations are solved 
numerically using Runge-Kutta fourth order method along with shooting technique. 
The effects of variable thermo-viscous parameters, magnetic parameter, permeability 
parameter and suction parameter on the velocity, temperature, skin-friction 
coefficient and Nusselt number are obtained and discussed in detail.  
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INTRODUCTION 
Natural convection flows driven by temperature 
differences are of great interest in a number of 
industrial applications. Buoyancy is also of 
importance in an environment where differences 
between land and air temperature can give rise to 
complicated flow patterns, and in enclosures such as 
ventilated and heated rooms and reactor 
configurations. Natural convection flows driven by 
temperature differences have been studied 
extensively. For example, Pohlhausen [11] first 
studied the steady free convection flow past a semi-
infinite vertical plate by integral method. But the 
similarity solution to steady free convection flow 
past a semi-infinite vertical plate was presented by 
Ostrach [10], who solved the ordinary non-linear 
equations by a numerical method. Siegel [17] was the 
first to study the transient free convection flow past 
a semi-infinite vertical plate by integral method. The 
same problem was studied by Gebhart [3] by an 
approximate method.    
In all the above studies, the free convection flow 
along a vertical flat plate was restricted, in general, 
to the case where the temperature difference 
between the plate and the fluid is small, so that the 
fluid properties may be taken as constant. For the 
fluids, which are important in the theory of 
lubrication, the heat generated by the internal 
fiction and the corresponding rise in temperature do 
affect the viscosity and thermal diffusivity of the 
fluid and they can no longer be regarded as constant. 
The physical properties of fluids such as viscosity and 
thermal diffusivity may change significantly with 

temperature. The temperature dependent property 
problem is further complicated by the fact that the 
properties of different fluids behave differently with 
temperature. Different relations between the 
physical properties of fluids and temperature are 
given by Kays and Grawford [8]. Mehta and Sood [9] 
have shown that when this effect is included, the 
flow characteristics may be substantially changed 
compared to the constant viscosity case. The 
influence of variable viscosity on the laminar 
boundary layer flow and heat transfer due to a 
continuously moving flat plate is examined by Pop et 
al. [12]. Kafoussias and Williams [7] investigated the 
effect of temperature-dependent viscosity on free-
forced convective laminar boundary layer flow past a 
vertical isothermal plate. Hossain and Munir [4] 
analyzed a two-dimensional mixed convection flow of 
a viscous incompressible fluid of temperature 
dependent viscosity past a vertical plate. Elbashbeshy 
and Ibrahim [2] investigated the steady free 
convection flow with variable viscosity and thermal 
diffusivity along a heated vertical plate.  
Hydromagnetic flows and heat transfer have become 
more important in recent years because of its varied 
applications in agriculture, engineering and 
petroleum industries. The free convection flow with 
variable viscosity and thermal diffusivity along a 
vertical plate in the presence of magnetic field has 
been studied by Elbashbeshy [1]. The effect of 
temperature dependent viscosity and thermal 
conductivity on unsteady MHD convective heat 
transfer past a semi-infinite vertical porous plate 
was studied by Seddek and Salama [16].  
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The heat transfer problem from different geometries 
embedded in porous media has many practical 
applications in industrial and technological fields 
such as geothermal reservoirs, drying of porous 
solids, thermal insulation, and enhanced oil recovery, 
packed-bed catalytic reactors, cooling of nuclear 
reactors and under ground energy transport. Raptis 
[13] considered mathematically the case of time-
varying two-dimensional natural convection flow of 
an incompressible, electrically conducting fluid along 
an infinite vertical porous plate through a porous 
medium. Raptis et al. [14] analyzed hydromagnetic 
free convection flow through a porous medium 
between two parallel plates. 
However the impact of variable viscosity and thermal 
diffusivity of a hydromagnetic free convection flow 
along a vertical porous plate embedded in a porous 
medium has received little attention. Hence an 
attempt is made to study the effects of variable 
viscosity and thermal diffusivity on a steady two-
dimensional free convection flow of a viscous 
incompressible electrically conducting fluid along a 
vertical porous plate embedded in a porous medium. 
The governing equations are transformed by using 
similarity transformation and the resultant 
dimensionless equations are solved numerically using 
the Runge-Kutta fourth order method with shooting 
technique. The effects of various governing 
parameters on the velocity, temperature, skin-
friction coefficient and Nusselt number are shown in 
figures and tables and analyzed in detail. 
MATHEMATICAL ANALYSIS 
A steady two-dimensional laminar free convection 
flow of a viscous incompressible electrically 
conducting fluid along a moving semi infinite vertical 
flat plate embedded in a porous medium is 
considered. The flow is assumed to be in the x-
direction, which is taken along the plate and y-axis 
normal to the plate. A uniform magnetic field is 
applied in the direction perpendicular to the plate. 
The fluid is assumed to be slightly conducting, and 
hence the magnetic Reynolds number is much less 
than unity and the induced magnetic field is 
negligible in comparison with the applied magnetic 
field. It is further assumed that there is no applied 
voltage, so that the electric field is absent.  All the 
physical properties of the fluid are assumed to be 
constant except for the fluid viscosity, which varies 
exponentially with the fluid temperature, the 
thermal conductivity which varies linearly with the 
fluid temperature and the density variation in the 
body force term in the momentum equation where 
the Boussinesq’s approximation is invoked. Under 
these assumptions, the conservation equations of the 
laminar boundary layer flow under consideration are     
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Energy equation 
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where u and v are the velocity components in the x- 
and y- directions respectively, ρ - the density of the 
fluid, μ - the variable dynamic coefficient of 
viscosity, g - the gravitational acceleration, T - the 
temperature of the fluid, ∞T  - the temperature far 
away from the plate, σ - the electrical conductivity 
of the fluid, 0B - the magnetic induction, K ′ - the 
permeability of the porous medium and α -  the 
variable thermal diffusivity of the fluid.  
The boundary conditions for the velocity and 
temperature fields are 

0Uu = , ( )xvv 0= , wTT =   at 0y =  
   0u → , ∞→ TT  as  ∞→y    (4) 

where 0U  is the uniform velocity, )x(v0 - the 

velocity of suction at the plate and wT - the 
temperature of the plate. 
The mass conservation equation (1) is satisfied by the 
stream function )y,x(ψ  
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To transform equations (2) and (3) into a set of 
ordinary differential equations, the following 
dimensionless variables are introduced: 
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where θ  is the non-dimensional temperature 
function, Gr  - the thermal Grashof number, M - the 
magnetic field parameter, K - the permeability 
parameter, Pr - the Prandtl number, υ - the 
kinematic viscosity, 0α - the thermal diffusivity at 
temperature wT , 0μ  -the viscosity at temperature 

wT , k - the thermal conductivity and pc - the specific 

heat at constant pressure. 
The variations of viscosity and thermal diffusivity 
with the dimensionless temperature are written in 
the form (Ibrahim and Ibrahim [5], Slattery [18]) 
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where β  and γ  are the parameters depending on 
the nature of the fluid. 
In view of equations (6)-(8), the equations (2) and (3) 
transform into 
   [ ] 0f)KMe(eGrfeff =′+−+′−′′+′′′ βθβθβθ θθβ     (9) 
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The corresponding boundary conditions are 

wff = , 1f =′ , 1=θ  at 0=η  

   0f =′ , 0=θ  as ∞→η                 (11) 
where f is the dimensionless stream function, 

0
0w U

x2vf
υ

−=  is the dimensionless suction velocity 

and prime denotes differentiation with respect to the 
variableη . 
SOLUTION OF THE PROBLEM 
The non-linear governing boundary layer equations 
(9) and (10) together with the boundary conditions 
(11) are solved numerically by using Runge-Kutta 
fourth order technique along with shooting method. 
First of all, higher order non-linear differential 
equations (9) and (10) are converted into 
simultaneous linear differential equations of first 
order and they are further transformed into initial 
value problem by applying the shooting technique 
(Jain et al. [6]).  
The resultant initial value problem is solved by 
employing Runge-Kutta fourth order technique. The 
step size 0.05ηΔ = is used to obtain the numerical 
solution with five decimal place accuracy as the 
criterion of convergence.  
From the process of numerical computation, the skin-
friction coefficient and the Nusselt number are also 
obtained and are presented in a tabular form. 
RESULTS AND DISCUSSIONS 
The parameters of the flow β , γ and Pr can be taken 
as follows (H. Schlichting [15], E.M.A. Elbashbeshy 
[1]): for air: - 0.7 ≤ β ≤  0, 0 ≤  γ  ≤  6, Pr   = 0.733. 
The effects of magnetic field parameter M, 
permeability parameter K, β ,γ , thermal Grashof 

number Gr and suction parameter wf  on the velocity 
are shown in Figures 1-6.  
It is observed that the velocity decreases as the 
magnetic parameter increases (Figure 1). It is 
because that the application of transverse magnetic 
field will result in a resistive type force (Lorentz 
force) similar to drag force which tends to resist the 
fluid flow and thus reducing its velocity. Also, the 
boundary layer thickness decreases with an increase 
in the magnetic parameter.  
The parameter K as defined in equation (6) is 
inversely proportional to the actual permeability K’ 
of the porous medium. An increase in K will 
therefore increase the resistance of the porous 
medium (as the permeability physically becomes less 
with increasing K’) which will tend to decelerate the 
flow and reduce the velocity. This behavior is evident 
from Figure 2.  
From Figure 3, it is clear that the velocity near to 
the vertical plate ( =η constant) increases as β  
increases (the viscosity of air decreases). But an 
opposite effect is noticed at a certain distance from 
the plate ( 10 ≅η ). Figure 4 shows that the velocity 

in the fluid increases as γ  increases (the thermal 
diffusivity of air increases) for fixed values of β . 
Moreover, the rise in the magnitude of the velocity is 
quite significant in the present case, showing that 
the volume rate of flow at a section perpendicular to 
the plate increases with an increase inγ .  
The thermal Grashof number Gr signifies the relative 
effect of the thermal buoyancy force to the viscous 
hydrodynamic force in the boundary layer.  
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Figure 1. Velocity profiles  
for different values of M 
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Figure 2. Velocity profiles  
for different values of K 
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Figure 3. Velocity profiles  
for different values of β 
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Figure 4. Velocity profiles  
for different values of γ 
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Figure 5. Velocity profiles  
for different values of Gr 

 

Figure 6. Velocity profiles  
for different values of fw 

 

As expected, from Figure 5, it is observed that there 
is a rise in the velocity due to the enhancement of 
thermal buoyancy force. Here, the positive values of 
Gr correspond to cooling of the plate. Also, as Gr 
increases, the peak values of the velocity increases 
rapidly near the porous plate and then decays 
smoothly to the free stream velocity.  

 
From Figure 6, it is noticed that an increase in the 
suction parameter results in a decrease in the 
velocity. 
The effects of magnetic field parameter M, 
permeability parameter K, β ,γ , thermal Grashof 

number Gr and suction parameter wf  on the 
temperature are shown in Figures 7-12.  
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Figure 7. Temperature profiles  

for different values of M 
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Figure 8. Temperature profiles  

for different values of K 
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Figure 10. Temperature profiles  

for different values of γ 
 

0 1 2 3 4 5

η

 Gr =4.0
 Gr = 5.0

β  = - 0.4, γ = 4.0, Pr = 0.733
M = 1.0, K = 0.5, fw = 0.5

 
Figure 11. Temperature profiles  

for different values of Gr 
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It is observed that greater magnetic parameter 
causes a rise in the temperature (Figure 7). An 
increase in the permeability parameter causes a rise 
in the temperature. This is obvious from Figure 8.  
From Figure 9, it is noticed that as β  increases, the 
temperature decreases and the decrement is very 
small.   
Figure 10 reveals that the temperature in the fluid 
increases as γ  increases (the thermal diffusivity of 

air increases) for fixed values of β . Moreover, in this 

case, the rise in the magnitude of the temperature is 
quite significant. It is seen that an increase in the 
Grashof number results in a decrease in the 
temperature (Figure 11).   
Figure 12 illustrates that an increase in the suction 
parameter results in a decrease in the temperature. 

Table 1. Skin-friction coefficient Cf  and Nusselt 
number Nu for Pr = 0.733. 

Β γ M K Gr fw Cf Nu 
-0.4 4 1.0 0.5 5.0 0.5 1.1398 0.3009 
-0.2 4 1.0 0.5 5.0 0.5 1.3508 0.3022 
-0.4 2 1.0 0.5 5.0 0.5 0.8967 0.4102 
-0.4 4 2.0 0.5 5.0 0.5 0.6051 0.2832 
-0.4 4 1.0 1.0 5.0 0.5 0.8579 0.2917 
-0.4 4 1.0 0.5 4.0 0.5 0.7108 0.2875 
-0.4 4 1.0 0.5 5.0 1.0 1.0135 0.3415 

 

The effects of the β ,γ ,M , K, Gr and fw on the skin-
friction coefficient and Nusselt number are shown in 
Table 1. It is seen that, as β or K or Gr increases, the 
skin-friction coefficient as well as the Nusselt 
number increases.  
Also, as γ  increases, the skin-friction coefficient 
increases, whereas the Nusselt number decreases. 
Further, as M increases, there is a fall in both the 
skin-friction coefficient and Nusselt number. It is 
observed that as fw increases the skin-friction 
coefficient decreases, whereas the Nusselt number 
increases. 
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