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ABSTRACT: The steady flow of an electrically conducting, incompressible micropolar 
fluid in a narrow gap between two concentric rotating vertical cylinders, with porous 
lining on inside of outer cylinder, under an imposed axial magnetic field is studied. 
Beavers and Joseph slip condition is taken at the porous lining boundary. The velocity 
profiles, coefficient of skin friction on the cylinders are calculated. The effects of 
Hartmann number, the porous lining thickness parameter, coupling number, couple 
stress parameters and Reynolds number on azimuthal velocity, micro-rotation 
component and coefficient of skin friction on cylinders are depicted through graphs.  
KEYWORDS: Micropolar fluid; Magnetic field; porous lining; Skin friction; Angular 
velocity; micro-rotation vector 

 
INTRODUCTION 
Micropolar fluids are fluids with microstructures. 
They belong to a class of fluids with a non-symmetric 
stress tensor. Micropolar fluids consist of rigid, 
randomly oriented spherical particles with their own 
spins and micro-rotations, suspended in a viscous 
medium. The concept of micro-rotation was proposed 
by Cosserat and Cosserat in the theory of elasticity 
[1]. In the middle of the 1960s, Condiff and Dahler 
[2] and Eringen [3] applied the concept to describe 
fluids with microstructures. Recently, a 
comprehensive text book on micropolar fluids has 
been published [4]. Physical examples of micropolar 
fluids can be seen in ferrofluids [5], blood flows [6, 
7], bubbly liquids [8], liquid crystals [9], and so on, 
all of them containing intrinsic polarities. Thus, 
micropolar fluid mechanics is not a useless 
generalization of the Navier-Stokes model, but is a 
physically relevant model that has many applications. 
Flows through and past porous media with finite 
thickness are of relevance in many industrial 
applications like lubrication and tapping of solar 
energy. The control of shearing stress is important in 
the design of  rotating machinery like totally 
enclosed fan cooled motors and lubrication industry 
in which centrifugal force plays a major role.  
Channabasappa et al [10] have examined the effect 
of porous lining thickness on velocity vector and 
shear stresses at the wall of inner and outer cylinders 
for the flow between two rotating cylinders. Sai [11] 
has studied the steady motion of an electrically 
conducting, incompressible viscous liquid in a narrow 
gap between two concentric rotating vertical 
cylinders in presence of an imposed magnetic field 
and he has presented the velocity profiles 

graphically. Bathaiah et al [12] have studied the 
viscous incompressible, slightly conducting fluid flow 
between two concentric rotating cylinders with non-
erodable and non conducting porous lining on the 
inner wall of the outer cylinder under the influence 
of radial magnetic field of the form given in Hughes 
and Young and they have shown the effect of 
magnetic parameter, porous lining thickness, the 
ratio of the velocities of the cylinders, the slip 
parameter on velocity and temperature distributions 
graphically.  Beavers and Joseph [13] studied the 
flow of a viscous fluid in a channel bounded below by 
a naturally permeable wall. Ramamurthy [14] have 
obtained the velocity distribution and magnetic field 
for a viscous incompressible conducting fluid between 
two coaxial rotating cylinders under the influence of 
radial magnetic field. Singh et al [15] have 
investigated the impulsive motion of a viscous liquid 
contained between two concentric circular cylinders 
in the presence of radial magnetic field. Mahapatra 
[16] studied the unsteady motion of an 
incompressible viscous conducting liquid between two 
porous concentric circular cylinders in presence of a 
radial magnetic field. Subotic et al [17] have 
obtained the analytical solutions for the flow and 
temperature fields in an annulus with a porous sleeve 
between two rotating cylinders and they studied the 
effects of Darcy number, Brinkman number and 
porous sleeve thickness on the velocity profile and 
temperature distribution. Ranganna et al [18] have 
studied the stability analysis of laminar flow 
between two long concentric circular rotating 
cylinders with non-erodible porous lining on the 
outer wall of the inner cylinder and he has shown the 
effect of porous lining thickness on critical Taylor 
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number graphically. Kamel [19] has studied the 
creeping motion of a polar fluid in the annular region 
between the two eccentric rotating cylinders. He 
depicted the dependence of the velocity components 
and the spin on the coupling number and the length 
ratio graphically. Meena et al [20] have studied the 
flow of a viscous incompressible fluid between two 
eccentric rotating porous cylinders with small 
suction/injection at both the cylinders and they have 
presented stream lines and pressure plots 
graphically. Borkakati et al [21] have examined the 
steady flow of an incompressible electrically 
conducting fluid between two coaxial cylinders in 
presence of radial magnetic field and they plotted 
graphically the heat transfer rate from the cylinders 
against the Hartmann number.  
Srinivasacharya et al [22] have studied the steady 
flow of incompressible and electrically conducting 
micropolar fluid flow between two concentric porous 
cylinders and they have presented the profiles of 
velocity and micro-rotation components for different 
micropolar fluid parameters and magnetic 
parameter. Pontrelli et al [23] studied the steady 
flow of an Oldroyd-B fluid between two porous 
concentric circular cylinders. They found velocity by 
numerically solving a system of nonlinear ODEs 
obtained from the equation of motion and 
constitutive equations and the effects of non-
Newtonian parameters on velocity and on shear stress 
are shown through graphs.  
Fetecau et al [24] studied the velocity fields 
corresponding to the motion of an incompressible 
second grade fluid due to longitudinal and torsional 
oscillations of an infinite circular cylinder. 
In this paper, we study the steady incompressible 
electrically conducting micropolar fluid flow between 
two concentric rotating cylinders with porous lining 
in the presence of an axial magnetic field. 
FORMULATION AND SOLUTION OF THE PROBLEM 
Consider an incompressible micropolar fluid between 
two concentric circular cylinders of radii a and b 
(a<b). The inner and outer cylinders are rotating with 
constant angular velocities Ω1 and Ω2 respectively. 

 
Figure 1. A section of the flow configuration 

There is a non-erodible porous lining of thickness h 
on the inside of the outer cylinder. The flow is 
generated due to the rotation of these cylinders.  
The flow is subject to a constant magnetic field B0 

along the axis of the cylinders and no external 
electric field is applied. We assume that the induced 
magnetic field is much smaller than the externally 

applied magnetic field. Assume that the magnetic 
Reynolds number is very small, so that induced 
magnetic field and electric field produced by the 
motion of the electrically conducting fluid are 
negligible. The physical model of the problem is 
shown in Figure 1. 
Choose the cylindrical polar coordinate system (R,θ, 
Z) with origin at the centre of the cylinder and Z axis 
along the axis of the cylinder and  with ( )zθr e,e,e  as 
unit base vectors. Neglecting body forces and body 
couples, the field equations governing the micropolar 
fluid dynamics are:  

∇1⋅Q  = 0                             (1)        

( ) BJ     Q  μ  l  P  Q.Qρ 11111 ×+×∇×∇+−×∇+∇−=∇ κκ    (2) 

( ) ( )l γβα  l  Q l2l.Qjρ 111111 ⋅∇∇+++×∇×∇−×∇+−=∇ γκκ
  
(3)      

where Q is velocity vector, l is micro rotation vector,  
P is the fluid pressure, ρ  and j are the fluid density 
and micro-gyration parameter, and {µ, κ}and {α, β, 
γ}are viscosity and gyro viscosity coefficients. The 
current density J, magnetic field B and electric field 
E are related by Maxwell’s equations 

t
BE1 ∂

∂
=×∇ , 0B1 =⋅∇ , JB1 μ′=×∇ ,  0J1 =⋅∇   

and ( )BQ  E J e ×+= σ  

where 1∇  is the dimensional gradient, σe is electrical 

conductivity and μ′  is the magnetic permeability. By 
nature of the flow, the velocity and micro-rotation 
components are axially symmetric and depend only 
on radial distance. Hence we assume that the 
velocity, micro-rotation vectors and the magnetic 
field are of the form 

Q =V(r) eθ, l = C (r) ez, B = B0 ez           (4) 

Hence J×B simplifies to QBBJ 2
0eσ-=× . 

We introduce the following non-dimensional scheme  
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Using (5) in (2) and (3) we get the equations for the 
flow in the following form 

qM qυ cpReq.q Re 2−×∇×∇−×∇+∇−=∇      (6) 

( )υ  1υ q sυ s2υ.q ⋅∇∇+×∇×∇−×∇+−=∇
δ

ε       (7) 

where the non-dimensional parameters viz. Reynolds 
number Re, Hartmann number M, cross viscosity 
parameter or coupling number c, couple stress 
parameters s and d and gyration parameter ε are 
defined by 
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The velocity and micro-rotation are choosen in the 
form 

( ) θe rvq =   and  ( ) ze rC υ =                  (9) 
Substituting (9) in (6) and comparing the components 
along θr e,e  directions, we get 

r
v

dr
dp 2

=                          (10) 

0vMvD
dr
dCc 22 =−+−                 (11) 

where 22

2
2

r
1  

dr
d

r
1

dr
dD −+=  

Similarly using (9) in the equation (7), the axial 
direction component yields the following equation 
for micro-rotation C. 

0
dr
dC 

r
1

dr
Cd

r
v

dr
dv sC 2s 2

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⎟

⎠
⎞

⎜
⎝
⎛ ++−            (12) 

Eliminating 
dr
dC

 value from (11) and (12) we get the 

following equation for v as       
              ( )( ) 0v2sMvD sc2 M vD 2224 =+−+−  
This can be expressed as 

 ( ) ( ) 0vλD  λD 2
2

22
1

2 =−−                (13) 
where  

( )c2sMλλ 22
2

2
1 −+=+  and 22

2
2
1 2sMλλ =  

As q is finite between the interval r0<r< r1=1–e, the 
solution of (13) can be written as  
   ( ) ( ) ( ) ( ) ( )rλK arλI arλK arλI arv 214213112111 +++=  (14)  
The constants a1, a2, a3 and a4 can be found by using 
the no slip boundary condition on azimuthal velocity 
v and hyper-stick boundary condition on micro-
rotation C. These conditions at the inner cylinder and 
at the porous lining of outer cylinder are explicitly 
given as below. 
BOUNDARY CONDITIONS 
The equations (14) is solved for the velocities v and 
C, and can be found by using the boundary conditions 

V = aΩ1 at R = a 
V= VB at R = b–h 

ΓΓ Qcurl
2
1l =  at R=a                    (15) 

0l =Γ  at R = b–h 
where Γ represent the boundary of inner cylinder and 
VB is the slip velocity obtained by using Beavers and 
Joseph condition 

( )  h  bR at   QV 
K
α

dR
dV

DB −=−=           (16) 

α is the slip parameter, K is the porosity of the lining 
material, λ is the ratio of the angular velocities of 
the cylinders, QD is the Darcy velocity in the porous 
lining. In equation (16), the Darcy’s velocity QD is 
given by the relation  

QD=RΩ2+Ф                           (17) 

where 
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which on simplification is given by 
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The expression for Ф, as given above, is the one 
considered by Channabasappa et al [10]. In relation 
(17), the two terms on RHS arise due to the rotation 
of the porous medium along with the outer cylinder. 
Using the four boundary conditions of (15) in non-
dimensional form for velocity and micro-rotation 
components, we get the following equations 

( ) ( ) ( ) ( ) 00214021301120111 r   r λK ar λI a r λK a r λI a λ=+++  

544332211    a a a a ΔΔΔΔΔ =+++            (19) 
λΔΔΔΔ sc2 a a a a 94837261 =+++        
0 a a a a 134123112101 =+++ ΔΔΔΔ  

where: ( ) ( ) ( )121
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with ( )e1 m 11 −= λ  and ( )e1 m 22 −= λ   
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The linear systems of equations in (19) are solved 
numerically using Mathematica for the four constants 
a1, a2, a3, and a4 for various values of micropolar 
parameters. 
SKIN FRICTION 
The constitutive equation for stress tensor is given by 

( ) ( )mmijmijijij lω ε   e  2μ  δ PT −+++−= κκ          (20) 
where ω is the vorticity vector, eij is shear rate 
tensor, δij is the Kronecker delta and εijm is the 
alternating symbol. From equation (20), we get           

( ) C c   
r
v  c1  

dr
dv  Trθ −−−=                    (21) 
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where ( )kμ 
T

  T
2

rθ
rθ +

=
Ω

is the non dimensional stress. 

Hence the coefficient of skin friction on the inner 
and outer cylinders is given by 

2
rθ

f
ρU
2T

C = at R=a and R=b–h           (22) 

where U = Characteristic velocity = bΩ2  
This can be written in the following non-dimensional 
form as 

Re
T2

C rθ
f =  at  r=r0 and r=1–e            (23) 

TORQUE 
The torque acting on the cylinders about the common 
axis of the cylinders is given by 

( ) R  R 2πTτ rθ ××= .                 (24) 
Hence the non dimensional torque on inner and outer 
cylinders are calculated as  

0r    rrθ
 2

0in T r 2πτ
=

=  

and                  ( )
e-1  rrθ

2
out T e  - 1  2πτ

=
=                    (25) 

RESULTS AND DISCUSSIONS 
The velocity filed is considered along tangential 
(azimuthal) direction only.  In fact we can start with 
nonzero radial velocity and come to conclude that it 
should vanish by considering continuity equation and 
the condition that there is no suction on the walls. 
(See Channabasappa, Umapathy and Nayak [10].) 
We have investigated the effects of the Hartmann 
number M, the porous lining thickness parameter e, 
Reynolds number Re, coupling number c and couple 
stress parameter s on azimuthal velocity v, micro-
rotation velocity C and the coefficient of skin friction 
at the inner and outer cylinders are numerically 
obtained and are depicted through  Figures 2 to 19. 
The azimuthal velocity v and Micro-rotation velocity 
C are computed for different values of M and e.  
Figures 2–7 shows the azimuthal velocity v and micro-
rotation velocity C against distance r for different 
values of M at a fixed value of porous lining thickness 
parameter e = 0.1, 0.3, 0.4. We have observed that v 
decreases as e increases and C increases as e 
increases. Both v and C decrease as M increases. It is 
observed that the nature of velocity profiles v is 
increasing with distance where as the nature of 
rotation C is increasing and decreasing as M 
increases. But for small values of M, C is decreasing 
with r. When M takes large values, the values of C 
are near to zero. i.e rotation of the particles can be 
neglected.  
The Figures 2, 4 and 6 of velocity v are in good 
agreement with the results obtained by Bathaih and 
Venugopal [12] and Subotic and Lai [17], when there 
is no applied magnetic field (the curve with M 
=0.0001 indicates almost no magnetic field). Figures 
8 and 9 give the velocity profiles v and C for 
different values of c. From this it is clear that an 
increase in coupling parameter c increases the values 
of both the velocities v and C. i.e. if micro-polarity 
of the fluid increases, the velocity v and micro-
rotation C will also increase. In Figures 10 and 11 the 
velocity profiles v and C plotted against Re. From 

this it is clear that an increase in Re increases both 
the velocities.  

                    
Figure 2. Variation of v with r at e = 0.1 

                    
Figure 3. Variation of C with r at e = 0.1 

 
Figure 4. Variation of v with r at e = 0.3 

 
Figure 5. Variation of C with r at e = 0.3 
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Figure 6. Variation of v with r at e = 0.4 

 
Figure 7. Variation of C with r at e = 0.4 

 
Figure 8. Variation of v with r 

 
Figure 9. Variation of C with r 

 
Figure 10. Variation of v with r 

 
Figure 11. Variation of C with r 

 
Figure 12. Variation of v with r 

 
Figure 13. Variation of C with r 
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Figures 12-13 we have seen that as the couple stress 
parameter s increases both the velocities v and C are 
increasing. But the effect of s on the values of v is 
not very significant. i.e., the variation in the values 
of s does not result in much variation in the values v.  
Figures 14–16 show the variation the coefficient of 
skin friction 

infC  at the inner cylinder against c for 

different values of M, Re, s.  
We observe that 

infC  decreases with increasing 

values of M, Re, s whereas in Figures 17–19, the skin-
friction 

outfC  at the outer cylinder increases with 

increasing values of M, Re, s.   

                                                                           
Figure 14. Variation of 

infC  with c 

 
Figure 15. Variation of 

infC  with c 

 
Figure 16. Variation of 

infC  with c 

 
Figure 17. Variation of 

outfC  with c 

 
Figure 18. Variation of 

outfC  with c 

 
Figure 19. Variation of 

outfC  with c             

 
Figure 20. Variation of 

infC  with e    
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Figure 21. Variation of 

outfC  with e 

Figures 20–21 show the variation of the coefficient of 
skin friction at inner and outer cylinders against M 
for different values of e.  
We observe that 

infC  increases, whereas 
outfC  

decreases with increasing values of e. These results 
are in correlation with the results of Bathiah and 
Venugopal [12]. 
CONCLUSIONS 
In this paper, the effect of axial magnetic field on 
micropolar fluid flow due to steady rotation of 
concentric cylinders with inner porous lining is 
examined. It is observed that  
1. Micro-polarity of the fluid affects the velocity 

but couple stress parameter can not affect the 
velocity profiles  

2. As magnetic field strength increases velocity 
decreases and micro-rotation of the particles 
decreases and there by skin friction decreases at 
inner cylinder and increases at outer cylinder  

3. As porous lining thickness increases, the skin 
friction at the inner cylinder increases and at 
the outer cylinder decreases. 
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