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ABSTRACT: This paper gives a general overview of the EWMA statistics. In addition to 
already known concepts, the paper presents a comparative analysis of different 
smoothing schemes. The optimization possibilities of this statistics are also discussed. 
With intention to improve the process of exponential smoothing, the behavior of the 
moving trimmed mean and moving median in computer network environment was 
examined in relation to the most commonly used moving average. For this purpose, 
several different types of distribution are used to model network traffic. Using the 
software package “Matlab”, sequences of random numbers are generated for each type 
of distribution, as the way to simulate network traffic. It is shown that the moving 
average and moving trimmed mean better follow the curve of original traffic. At the 
same time, comparing the situation with and without outliers, the smallest relative 
jump of MSE was determined for moving average and moving median. This conclusion 
justifies their use for the elimination of the negative impact of outliers and positively 
affects the general level of traffic control in computer networks.  
KEYWORDS: computer networks, mean square methods, optimization, smoothing 
methods, statistical distributions 

 
INTRODUCTION 
Inherent in the collection of data taken over specific 
time is some form of random value variation. There 
exist various methods for reducing the unwanted 
effect due to random variation. An usual statistical 
technique is smoothing. This technique, when 
properly applied, detects more clearly the underlying 
trend, seasonal and cyclic components. There are two 
different categories of smoothing methods: averaging 
and exponential smoothing. Taking averages is the 
simplest way to smooth data. Given a series of 
numbers and a fixed subset size, the moving average 
can be obtained by taking the average of the first 
subset. The fixed subset size is then shifted forward, 
forming a new subset of numbers, which is averaged. 
This process is repeated over the entire data series. 
The line connecting all the calculated partial 
averages is the graphical representation of moving 
average. A moving average is a set of numbers, each 
of which is the average of the corresponding subset 
of a larger set of data points. 
The exponentially weighted moving average (EWMA) 
is a statistic for monitoring the process that averages 
the data in a way that gives adjustable weight to 
data as they are further removed in time. For the 
EWMA control technique, the decision regarding the 
state of control of the process depends on the EWMA 
statistic, which is an exponentially weighted average 
of all prior data, including the most recent 
measurements. 
By the choice of weighting factor λ, the EWMA 
control procedure can be made sensitive to a small or 
gradual drift in the process. 

The statistic that is calculated is the following: 

1)1( −⋅−+= tt EWMAYEWMA λλ  (1) 
for t=1, 2, …, n 
where 
 EWMA0 is the mean of historical data 
 Yt is the observation at time t 
 n is the number of observations to be monitored 
including EWMA0 

 0 < λ ≤ 1 is a constant that determines the depth of 
memory. 

This equation has been established by Roberts as 
described in [1]. The parameter λ determines the 
rate at which “older” data enter into the calculation 
of the EWMA statistic. A value of λ = 1 implies that 
only the most recent measurement influences the 
EWMA. Thus, a large value of λ = 1 gives more weight 
to recent data and less weight to older data - a small 
value of λ gives more weight to older data. The value 
of λ is usually set between 0.2 and 0.3 [2], although 
this choice is somewhat arbitrary. Lucas and Saccucci 
[3] have shown that although the smoothing factor λ 
used in an EWMA chart is usually recommended to be 
in the interval between 0.05 to 0.25, in practice the 
optimally designed smoothing factor depends not 
only on the given size of the mean shift δ, but also on 
a given in-control Average Run Length (ARL). ARL 
represents the average number of determined 
process points before the first point indices the 
appearance of out-of-control state (exceeding one of 
the control limits). 
The estimated variance of the EWMA statistic is 
approximately [4]: 
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where σ is the standard deviation calculated from 
the historical data. 
The center line for the control chart is the target 
value or EWMA0. The upper and lower control limits 
are: 

EWMAkEWMAUCL σ+= 0  (3) 

EWMAkEWMALCL σ−= 0  (4) 
where the factor k is either set equal 3 (the 3-sigma 
control limits) or chosen using the Lucas and 
Saccucci tables (ARL = 370). 
In addition to the aforementioned authors, the 
publications [5]-[12] have also dealt with the topic of 
EWMA statistics and the application of statistical 
anomaly detection in computer networks.  
Control charts are specialized time series plots, 
which assist in determining whether a process is in 
statistical control. Some of the most widely used 
forms of control charts are X-R charts and Individuals 
charts. These are frequently referred to as 
“Shewhart” charts after the control charting pioneer 
Walter Shewhart who introduced such techniques. 
These charts are sensitive to detecting relatively 
large shifts in the process (i.e. of the order of 1.5σ 
or above). In computer network practice, shifts can 
be caused by intrusion or attack, for example. Two 
types of charts are usually used to detect smaller 
shifts (less than 1.5σ), namely cumulative sum (or 
CUSUM) charts and EWMA charts. A CUSUM chart 
plots the cumulative sums of the deviations of each 
sample value from a target value. An alternative 
technique to detect small shifts is to use the EWMA 
methodology. This type of chart has some very 
attractive properties, in particular: 
1. Unlike X-R and Individuals charts, all of the data 

collected over time may be used to determine 
the control status of a process. 

2. Like the CUSUM, the EWMA utilizes all previous 
observations, but the weight attached to data 
exponentially decreases as the observations 
become older and older. 

3. The EWMA is often superior to the CUSUM 
charting technique due to the fact that it detects 
larger shifts better. 

4. EWMA schemes may be applied for monitoring 
standard deviations in addition to the process 
mean. 

5. EWMA schemes can be used to forecast values of 
a process mean. 

6. The EWMA methodology is not sensitive to 
normality assumptions. 

In real situations, the exact value of the shift size is 
often unknown and can only be reasonably assumed 
to vary within a certain range. Such a range of shifts 
deteriorates the performance of existing control 
charts. 
COMPARISON OF SMOOTHING SCHEMES 
Calculating the optimal value of parameter λ is based 
on the study of authentic samples of network traffic. 
Random variations of network traffic are normal 
phenomena in the observed sample. In order to 

decrease or eliminate the influence of individual 
random variations of network traffic on occurrence 
of false alarms, the procedure of exponential 
smoothing is applied, as an aspect of data 
preprocessing. 
For any time period t, the smoothed value St is 
determined by computing: 

11 )1( −− ⋅−+⋅= ttt SyS λλ  (5) 
where 0 < λ ≤ 1 and t ≥ 3. 
This is the basic equation of exponential smoothing. 
The formulation here is given by Hunter [2]. It should 
be noted that there is an alternative approach, in 
which, according to Roberts [1], yt is used instead of 
yt-1. 
This smoothing scheme starts by setting S2 to y1, 
where Si stands for smoothed observation or EWMA, 
and yi stands for the original observation. The 
subscripts refer to the time periods 1, 2, ..., n. For 
example, the third period is S3 = λ y2 + (1 – λ) S2 and 
so on. There is no S1. The optimal value for λ is the 
value which results in the smallest sum of the 
squared errors (SSE) or mean of the squared errors 
(MSE). 
Comparative analysis of two different approaches 
(Roberts and Hunter) can be shown using the example 
of a process (yt), with adopted values EWMA0 = 50 
and λ = 0.3. EWMA values in the table below 
correspond to Roberts’s and St to Hunter’s equation. 

Table 1. Comparison of smoothing schemes. 
time yt EWMA St 

1 52.00 50.60  
2 47.00 49.52 52.00 
3 53.00 50.56 50.50 
4 49.30 50.18 51.25 
5 50.10 50.16 50.67 
6 47.00 49.21 50.50 
7 51.00 49.75 49.45 
8 50.10 49.85 49.91 
9 51.20 50.26 49.97 
10 50.50 50.33 50.34 
11 49.60 50.11 50.39 
12 47.60 49.36 50.15 
13 49.90 49.52 49.39 
14 51.30 50.05 49.54 
15 47.80 49.38 50.07 
16 51.20 49.92 49.39 
17 52.60 50.73 49.93 
18 52.40 51.23 50.73 
19 53.60 51.94 51.23 
20 52.10 51.99 51.94 
21   51.99 

 

In Table 1 the fields with approximately equal values 
are marked with lighter colour, while fields with 
equal values are marked with darker colour. From 
this analysis it can be concluded that after a certain 
number of samples (in this case about the 16th 
sample) both schemes give the same smoothed 
values. 
The behaviour of both smoothing schemes will be 
examined also with SSE values. After calculating SSE 
for different λ, results were as follows. 
Analysis of the obtained results has shown that 
approximately similar values were obtained, with 
greater coincidence at higher values of smoothing 
factor. 
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Table 2. Comparison of values for SSE according to 
Roberts and Hunter 

λ SSE (Roberts) SSE (Hunter) 
0.1 62.81 75.01 
0.2 49.95 55.86 
0.3 39.28 42.16 
0.4 30.25 31.62 
0.5 22.40 23.01 
0.6 15.50 15.71 
0.7 9.55 9.57 
0.8 4.70 4.66 
0.9 1.31 1.29 

 

The initial EWMA plays an important role in 
computing all the subsequent EWMA's. There are 
several approaches to define this value: 
1. Setting S2 to y1 
2. Setting S2 to the target of the process  
3. Setting S2 to average of the first four or five 

observations  
It can also be shown that the smaller the value of λ, 
the more important is the selection of the initial 
EWMA. 
ARL CURVES 
Using a graphical method, the EWMA chart can be 
designed to have minimal ARL for the out-of-control 
situation, for the known shift of the mean δ and 
given ARL for the in-control situation. This chart has 
two parameters - λ and k (derives from the definition 
of control limits). 
Figures below show the dependence of λ and k of the 
mean shift δ, for ARL as parameter. Using 
appropriate curves, values k = 2.7878 and λ = 0.1417 
were determined as the optimal choice for the 
earliest detection of shift δ = 1σ. 

 
Figure 1. Optimal choice of λ in function  

of the mean shift [13] 

 
Figure 2. Optimal choice of k in function  

of the mean shift [13] 

MOVING AVERAGE, MOVING MEDIAN AND MOVING 
TRIMMED MEAN IN SIMULATED NETWORK 
ENVIRONMENT 
The calculation of moving average, based on time 
series network data, represents the basis of the 
application of EWMA statistics in network 
environment. This chapter will focus on the 
difference between moving average, moving trimmed 
mean and moving median, with the ambition to 
examine their behavior in a simulated network 
environment. 
The changes in the computer network traffic are 
identified by analyzing time series information for 
one or more variables which indicates how the 
monitored variable changes over time. Network 
operators sometimes visually inspect such time series 
information to detect and characterize operational 
problems. However, it can be advantageous to 
inspect such time series information in an automated 
manner. 
Unfortunately, outliers, data entry errors, or glitches 
exist in almost all real data. An outlier is an 
observation that lies an abnormal distance from 
other values in a random sample. In a sense, this 
definition leaves it up to the analyst to decide what 
will be considered abnormal. Before abnormal 
observations can be singled out, it is necessary to 
characterize normal observations. The sample mean 
is sensitive to these problems. One extreme data 
value can move the average away from the center of 
the rest of the data by an arbitrarily large distance, 
causing the situation of statistical anomaly or false 
alarm. The median and trimmed mean are two 
measures that are resistant (robust) to outliers. The 
median is the 50th percentile of the sample, which 
will only change slightly if you add a large 
perturbation to any value. The idea behind the 
trimmed mean is to ignore a small percentage of the 
highest and lowest values of a sample when 
determining the center of the sample. The geometric 
mean and harmonic mean, like the average, are not 
robust to outliers. 
From a statistical point of view, the moving average, 
when used to estimate the underlying trend in a time 
series, is susceptible to rare events such as rapid 
shocks or other anomalies. A more robust estimate of 
the trend is the simple moving median. Statistically, 
the moving average is optimal for recovering the 
underlying trend of the time series when the 
fluctuations about the trend are normally 
distributed. However, the normal distribution does 
not place high probability on very large deviations 
from the trend which explains why such deviations 
will have a disproportionately large effect on the 
trend estimate. 
There is no one single model that can be used 
effectively for modeling traffic in all kinds of 
computer networks. The type of network and the 
traffic characteristics dominantly influence the 
choice of the traffic model used for analysis. In the 
available literature the following types of 
distributions are used to model traffic: Poisson, 
normal, lognormal, Pareto, chi-square, Rayleigh, 
Weibull and gamma distribution. Using the software 
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package “Matlab” [15], sequences of 500 random 
numbers are generated for each type of mentioned 
distributions, as the way to simulate network traffic. 
For purpose of this research, the occurrence of 
outliers was simulated with 5 equal values, two times 
greater than the maximum value of all generated 
samples and distributed on every hundredth sample 
locations. Calculating the moving average, moving 
trimmed mean (10%, i.e. 5% of the highest and 5% of 
the lowest observations are excluded) and moving 
median, with width of the interval of 40 values 
(statistically large sample), the following values for 
the mean of the squared error (MSE) are obtained 
(values in brackets are MSE for the case without 
outliers): 

Table 3. MSE for different distributions. 

Distribution 
MSE 

(moving 
average) 

MSE (moving 
trimmed 
mean) 

MSE (moving 
median) 

Pareto 2.92 (0.84) 2.99 (0.85) 3.16 (0.95) 

Normal 2.1 (0.976) 2.112 (0.975) 2.119 
(0.986) 

Poisson 8.41 (4.72) 8.57 (4.75) 8.63 (4.86) 

Lognormal 0.473 
(0.196) 0.481 (0.196) 0.487 

(0.199) 
Rayleigh 3.15 (1.715) 3.19 (1.717) 3.26 (1.749) 

Chi-square 10.5 (4.32) 10.8 (4.41) 11.5 (4.86) 

Weibull 0.396 
(0.209) 0.401 (0.209) 0.412 

(0.214) 
Gamma 20.19 (7.65) 20.67 (7.67) 21.49 (8.08) 

 

Analyzing the above table, it can be concluded that 
for all the observed types of distribution, moving 
average and moving trimmed mean generates lower 
MSE than moving median, which implies that the 
moving average and moving trimmed mean better 
follow the curve of original network traffic. Besides, 
in the context of absolute values, the smallest MSE is 
obtained using Weibull, lognormal and normal 
distribution. Comparing the situation with and 
without outliers, the smallest relative jump of MSE 
(corresponds to the best robustness) was determined 
for moving average and moving median. The smallest 
values for relative jump are calculated for Poisson 
(about 80%), Rayleigh (about 85%) and Weibull 
distribution (about 90%). 
CONCLUSIONS 
In addition to already known concepts about EWMA 
statistics, this paper presents a comparative analysis 
of different smoothing schemes. It was shown that 
after a certain number of samples (approximately 
after the 15th sample), both known schemes provide 
the same smoothed value. With aim to improve the 
process of exponential smoothing, the behavior of 
the moving trimmed mean and moving median in 
computer network environment was examined in 
relation to the most commonly used moving average. 
For this purpose, network traffic is simulated using 
different types of distribution. It is shown that the 
moving average and moving trimmed mean curves 
better follow the curve of original traffic. At the 
same time, comparing the situation with and without 
outliers, the smallest relative jump of MSE 
(corresponds to the best robustness) was determined 
for moving average and moving median. This 
conclusion justifies their use for the elimination of 

the negative impact of outliers in the field of 
statistical anomaly detection and positively affects 
the general level of traffic control in computer 
networks. 
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