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Abstract: The paper presents an efficient approach for determining the equivalent circuit parameters of squirrel 
cage induction motors by genetic algorithms. A T80B4AB3 type squirrel cage induction motor is analyzed. The T-
shaped equivalent circuit is utilized. There are five unknowns in the equivalent circuit, namely: stator resistance 
and stator leakage reactance, rotor resistance and rotor leakage reactance, and magnetizing reactance. The known 
quantities from measurement are the input voltage, input current, power factor and slip. Genetic algorithms are 
used for determining the induction motor parameters. The results are compared by using one, two and three sets of 
measured data. The accuracy of the proposed approach is verified by determining the relative error in the 
parameters, obtained by genetic algorithms with regard to analytical values. It is shown that the presented 
approach needs only two points from the induction motor load curve. In contrast, the standard approach requires at 
least three points from the motor load curve to obtain relative error less than 1%. 
Keywords: genetic algorithms, induction motors, parameters of T-shaped equivalent circuit 
 
 
INTRODUCTION 
Electric drives using induction motors are one of 
the main fields of interest to the control systems 
and electrical engineering specialists. The quality 
and effective control of induction motors (IM) is 
based on their equivalent circuits [1].  
The necessity of knowing the equivalent circuit 
parameters of IM is constantly growing due to the 
following reasons [2]: 
√ students should get deeper, up-to-date and 

accurate knowledge in the physical processes 
occurring in IM; 

√ designed power converters should possess better 
quality indices in static and dynamic modes; 

√ increasingly adequate models of IM are needed 
for their research and improvement. 

The conventional method for estimation of IM 
equivalent circuit parameters is based on the no-
load and blocked rotor tests which are a time-
consuming task, especially if the motor is already 
coupled to driving equipment. This paper presents 
a more sophisticated approach for determining the 

equivalent circuit parameters of induction motors. 
The approach is based on only a series of measured 
or analytically obtained data such as stator voltage, 
current, power factor and slip. A genetic algorithm 
model for determining the parameters is 
synthesized that enables the simultaneous 
satisfaction of steady-state stator current and 
power factor by defining an objective function. The 
results obtained by the synthesized model are 
compared with analytical data. An analysis is 
performed that proves the validity and adequacy of 
such models in IM control systems. 
SURVEY OF THE METHODS FOR 
EQUIVALENT CIRCUIT PARAMETERS 
ESTIMATION OF INDUCTION MOTORS 
The methods for IM equivalent circuit parameters 
estimation can be classified in two main groups – 
experimental and computational. The classical 
experimental methods are a good alternative to the 
methods using nameplate data. They are performed 
by two tests – no-load test, blocked rotor test and 
measurement of the stator winding resistance [3]. 
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The no-load test is used to determine the core loss 
resistance. The blocked rotor test enables to 
determine the rotor resistance, the magnetizing 
reactance and the sum of the stator and rotor 
leakage reactances. By this approach, however, it is 
not possible to know how the leakage reactances are 
shared between the rotor and stator. This 
deteriorates the accuracy when predicting the 
dynamic performance of the motor. Moreover, in 
order to perform these tests in practice, several 
difficulties are faced. First, it is difficult to block 
the rotor when the motor is incorporated in a drive 
system. Second, the no-load test is often hard to 
perform since IM usually rotate with load such as 
fan or gear. Third, IEEE Standard 112 requires 
performing the motor tests with a voltage 
unbalance not exceeding 0.5% [3]. Field 
conditions, however, may exceed this limit 
significantly. Thus when evaluating motor 
performance in the field a more accurate and 
reliable approach is needed. 
The modern experimental methods include all 
methods using tests different from the classical no-
load and blocked rotor tests. Such methods include 
the use of transients in the motor equivalent circuit 
when supplied from direct voltage and/or direct 
current [4]. These methods have the following 
advantages – they are of short duration (only a few 
seconds) and the motor is not separated from the 
driving mechanism. Their disadvantage is the 
necessity of converter to have additional functions 
in order to perform the tests and to be provided 
with software to analyze the motor response to 
these tests. These functions are comparatively easy 
to realize. Recently electric drives appeared that 
perform auto adjustment by no-load and standstill 
tests. 
An efficient modern experimental method is 
proposed in [5]. It determines the equivalent circuit 
parameters based on the recorded time variations of 
voltage, current, power and speed from start-up till 
no-load. The method is accurate but has several 
disadvantages. It needs expensive equipment to 
record the time variations of the above electrical 
and mechanical quantities. The method is intrusive 
since all loads should be decoupled from the motor 
during the test. Finally, it is applicable only to 

large high-voltage induction machines rated 1 MW 
and above. 
Some of the computational methods are based on 
the motor nameplate and catalog data. Three 
methods for determining the equivalent circuit 
parameters when taking into account the steel 
losses are described in [6]. The methods are based 
on several assumptions such as: 
√ equal leakage inductances of stator and rotor 

windings; 
√ zero value of the referred leakage inductance of 

rotor winding when determining copper losses; 
√ zero value of the referred leakage inductance of 

stator winding when determining steel losses, 
etc. 

All three methods require knowing the rated 
supply voltage, stator current, rated power, power 
factor, rated speed and rated efficiency. It is also 
necessary to know the stator resistance which is 
easy to measure. The errors of the different 
parameters when using these methods vary from 
4% to 60% [6]. 
When catalog data for motors is available, it is easy 
to develop procedures for changing one type of 
equivalent circuit with another, as well as to relate 
the obtained results with synchronous speed, rated 
power, rated, breakdown and starting torque. Such 
approach is very attractive and several converter 
manufacturers use it [2, 7]. 
The methods based on the motor nameplate and 
catalog data are convenient and non-intrusive. 
They can be applied to various equivalent circuit 
modifications. Due to the assumption for constant 
efficiency the nameplate and catalogue data 
methods give good results for loads above 50%. 
When using these methods, however, three 
additional problems may occur. First, the 
nameplate efficiency may be given according to a 
standard other than IEEE Std. 112. The three most 
frequently used standards are the National 
Electrical Manufacturers Association (NEMA) 
that uses IEEE Std. 112, the Japanese 
Electrotechnical Committee (JEC) and the 
International Electrotechnical Commission (IEC). 
The three standards are not in agreement which 
may results in different efficiencies for a given 
motor [8]. Second, the motor may have been 
rewound and the nameplate or catalog data may no 
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longer be valid. Third, the field voltage unbalance 
and harmonics content may be different from that 
for which the nameplate or catalog data is derived. 
In this way when estimating the equivalent circuit 
parameters a great percentage of statistical error 
may be introduced. Another problem is the fact 
that due to various reasons, most manufacturers 
usually do not publish detailed data about their 
production.  
Other computational methods for equivalent 
circuit parameters estimation are the analytical 
methods using analytical expressions, developed 
decades ago [9]. They aim to obtain a steady-state 
performance of a motor for a given set of 
dimensions. The solutions by these methods are 
obtained very quickly, typically in seconds, on 
modern computers. The analytical methods, 
however, make quite a number of approximations, 
as IM operation involves 3D phenomena, 
saturation, eddy currents, etc. Some important 
details of geometry are also overlooked. These 
approximations deteriorate the accuracy of 
analytical methods.  
The fast improvement of computer performance, 
combined with the development of the finite 
element method (FEM), lead to another important 
class of computational methods – the numerical 
methods. The numerical methods predict IM 
parameters using the magnetic field numerical 
solution [10]. A number of professional software 
packages using FEM are now available that 
provide two or three dimensional magnetic field 
solutions. The 3D solutions are accurate but need 
long preprocessing and solution times. Therefore 
mostly 2D models of IM are analyzed. The 2D 
FEM analysis of IM yields reliable results, but has 
several disadvantages. First, the good software 
packages are commercial and expensive. Second, 
the finite element method requires detailed 
information about the stator and rotor geometry, 
number of turns, wire diameter, reluctivity curve 
of steel, etc. Third, it is necessary to compute 
analytically the stator end turn leakage reactance, 
the rotor end ring reactance and resistance [11].  
The last class of computational methods are the 
methods based on genetic algorithms, applied in the 
present paper.  

The survey of the methods for equivalent circuit 
parameters estimation shows, that intrusiveness, 
cost and accuracy are the major considerations 
when selecting a method for determining IM 
parameters. Users prefer a cheap and low intrusive 
method providing a good accuracy. 
MECHANISM AND MAIN OPERATORS OF 
GENETIC ALGORITHMS 
The genetic algorithms (GA) optimization is a 
stochastic search method that involves a random 
generation of potential solutions and then 
systematically evaluates the solutions until 
stopping criteria are met. Sets of non-linear 
equations are solved which are represented by 
objective functions based on some criterion (the 
calculated error). Also the reciprocal value of this 
criterion, called fitness function, is used. The 
mechanism of GA consists of the following steps 
[12]: 
√ Step 1: Create an initial population for mating; 
√ Step 2: Define the fitness (or objective) function 

of each member of the population; 
√ Step 3: Search for natural selection; 
√ Step 4: Select population members from the 

mating pool; 
√ Step 5: Generate offspring; 
√ Step 6:  Mutate the members of the population; 
√ Step 7: Terminate the optimization or for 

continuing go to Step 2. 
Genetic algorithms that find good results are 
composed of the following three operators: 
√ Selection – the process of choosing two parents 

from the population. The aim of this operator is 
to emphasize fitter individuals so that they can 
create offspring with higher fitness. Selection is 
a method that randomly chooses chromosomes 
from the population according to their 
evaluation function – the higher the fitness, the 
bigger chance an individual has to be selected. 
The most common types of selection are roulette 
wheel and tournament selection. The roulette 
wheel selection is easy to perform but it is 
unstable. For this reason in the present 
approach tournament selection is used. The best 
individual from the tournament is the one with 
the highest fitness and this one is the winner of 
the potential individuals. The tournament 



ACTA TEHNICA CORVINIENSIS                                                        Fascicule 2 [April – June] 
       – Bulletin of Engineering                     Tome VII [2014] 

| 120 | 

selection is very efficient and leads to an optimal 
solution. 

√ Crossover – the process of taking two parent 
solutions and producing a child. Thus, the 
population is enriched with better individuals. 
In the present work scattered crossover is used. 
It is created with the help of random binary 
vector called a mask. It selects the genes where 
the vector is “1” from the first parent and the 
genes where the vector is “0” from the other 
parent. That is how the child is produced by 
combining the genes of the two parents. 

√ Mutation – it prevents the algorithm to be 
trapped in a local minimum. Mutation makes 
small random changes in the individuals from 
the population, and thus it provides genetic 
diversity in the future offsprings and allows the 
GA to explore wider search space [13]. Genetic 
algorithms have several advantages over the 
other optimization methods. They find the global 
minimum, instead of a local minimum. GA do 
not require the use of the derivative of the 
function, which is not easily obtained or may 
not even exist. 

DEVELOPMENT OF THE GENETIC 
ALGORITHM MODEL AND OBJECTIVE 
FUNCTION DEFINITION 
In order the natural selection to be used for 
estimating the parameters of induction motor 
equivalent circuit, an objective function should be 
defined. This function is based on the equations of 
the T-shaped equivalent circuit without 
considering the steel losses (Figure 1). 

 
Figure 1. T-shaped equivalent circuit  

of the induction motor 
There are five unknowns in the circuit in Figure 1, 
namely: stator resistance R1 and stator leakage 
reactance X1, rotor resistance R2 and rotor leakage 
reactance X2 (both referred to stator), and 
magnetizing reactance Xm. The known quantities 
from measurement are the input voltage V1 that 

equals the rated voltage, the input current I1, 
power factor cos φ and slip s. 
Based on the T-shaped induction motor equivalent 
circuit in Figure 1, the stator current can be 
calculated: 
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where Zeq is the equivalent circuit impedance. 
The equivalent circuit resistance Req is equal to: 

( )2m2

2
2

2
2
m

1eq

XX
s
R

s
RX

RR
++⎟

⎠
⎞

⎜
⎝
⎛

+=              (2) 

The equivalent circuit reactance Xeq is computed as 
follows: 
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Now the power factor can be calculated: 
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Based on formulae (1) and (4), we shall develop the 
objective function: 
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In (5) I1c,i and cos φc,i are the values computed by 
(1) and (4). I1m,i and cos φm,i are the measured 
values. The variable n varies from 1 to 3 in our 
case. 
The analysis of (5) shows that the developed 
objective function reflects the error in the measured 
motor data and the results obtained with GA 
optimization. This means that the lower the error 
in the computed and the measured data, the smaller 
the values of the objective function. Thus, the 
fitness of the individuals rises because the objective 
function is reciprocal of the fitness function.  
The aim of GA is to minimize the error of the 
objective function defined by (5). In the present 
work the value of Fobj is set to zero and in this way 
the global minimum of the objective function is 
found. 
RESULTS AND DISCUSSION 
The parameters of a T80B4AB3 type squirrel cage 
induction motor with the following nameplate data 
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are estimated: 0.75 kW output power, 380 V phase-
to-phase voltage, 50 Hz frequency and 2 pairs of 
poles. The obtained GA results for the above 
mentioned motor are compared to the analytical 
data sets shown in Table 1. 

Table 1. Analytical data sets used in GA 
Stator current [A] Slip Power factor 

1.86 0.06 0.62 
2.39 0.10 0.74 
3.07 0.15 0.78 

 

One of the main difficulties when applying GA is 
how to choose an appropriate set of parameter 
values. Before running the algorithm, the user has 
to specify a number of parameters such as 
population size, selection rate, etc. According to 
the parameters setup, different results are obtained 
[14]. Their accuracy is measured by the relative 
error: 

.X/)XX( ananGA −=ε    (6) 
In (6) XGA is the value of the parameter, computed 
by the GA optimization, and Xa is the analytical 
value of the same parameter. 
The population size value is very important for GA 
performance. If it is too small, accurate solutions 
may not be reached. On the other hand, if 
population size is too large, unnecessary 
computational time is spent. The standard setting 
for population size is 20 to 100 individuals [14]. In 
order to guarantee good accuracy, however, we 
chose population size higher than the standard 
(500), although it lead to slightly higher 
computation time. Otherwise the population would 
lack diversity, the algorithm would explore only a 
small part of the search space and not find global 
optimal solutions. The standard configuration of 
the GA parameters is given in Table 2. These 
settings are chosen by analogy, namely using past 
experience that has proved successful for similar 
problems [14, 15]. 

Table 2. Genetic algorithm parameters 
Population size 500 

Selection function tournament 
Tournament size 4 

Elite count 2 
Mutation function adaptive feasible 
Crossover function scattered 
Crossover fraction 0.8 

 

Table 3 shows the equivalent circuit parameters 
estimated by the genetic algorithm as well as the 

relative error in the estimated parameters with 
regard to the analytical values. Due to the random 
nature of GA, each computed parameter value in 
Table 3 is an average of the best values from GA 
obtained in 10 runs. 

Table 3. Equivalent circuit parameters  
and relative error 

Parameter R1 R2 X1 X2 Хm 
Analytical 
value [Ω] 10,2 10,52 8,17 19,16 143,57 

GA [Ω] 63,32 11,11 44,74 104,92 56,84 1 data 
set ε [%] 520,80 5,55 447,61 447,61 -60,41 

GA [Ω] 10,44 10,48 8,21 19,25 142,85 2 data 
sets ε [%] 2,39 -0,36 0,44 0,49 -0,56 

GA [Ω] 10,26 10,48 8,17 19,16 143,18 3 data 
sets ε [%] 0,57 -0,36 -0,01 0,01 -0,27 

 

The results in Table 3 show that the proposed GA 
approach is very sensitive to the number of the 
used data sets. When one data set is used, there is a 
great discrepancy between analytical and estimated 
values. In this case the maximum error exceeds 
500%, because one single point can not define the 
nonlinear IM current-slip curve accurately. 
The use of two data sets greatly improves the 
accuracy, the maximum relative error being less 
than 3%. With 3 data sets the maximum ε is below 
1%. Thus, it can be concluded that when more data 
sets are used, more accurate results are obtained. 
Figure 2 shows the convergence versus the number 
of iterations when using 3 data sets. The total 
number of generations is 476 and the algorithm 
terminates at the value of 4.2026e-007. A zoomed 
picture for the 450th iteration is also shown in 
Figure 2.  

 
Figure 2. Convergence history with 3 data sets 

Next a new improved setup for solving the GA 
model for estimating the IM parameters is 
proposed. Table 4 shows the GA parameters 
settings. The computed results are given in Table 
5. 
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Table 4. Improved GA parameters 
Population Size 500 

Selection Function Roulette Wheel 
Elite Count 2 

Mutation Function Adaptive Feasible 
Crossover Function Intermediate 

Crossover Ratio 1,0 
 

Table 5. Results from the improved GA optimization 
Parameter R1 R2 X1 X2 Хm 

Analytical value 10,2 10,52 8,17 19,16 143,57 
GA [Ω] 66,19 19,11 44,71 104,85 51,92 1 data 

set ε [%] 548,88 81,63 447,21 447,25 -63,84 
GA [Ω] 10,25 10,49 8,14 19,09 143,13 2 data 

sets ε [%] 0,52 -0,26 -0,32 -0,37 -0,30 
GA [Ω] 10,19 10,49 8,15 19,11 143,28 3 data 

sets ε [%] -0,06 -0,30 -0,24 -0,24 -0,21 
 

The results from Table 5 confirm the fact that when 
one data set is used (i.e. one single point from the 
load curve), there is a great discrepancy between 
the analytical and estimated parameters. In this 
case the relative error exceeds 500% again.  
When two data sets are used, however, the 
accuracy of the improved GA optimization is 
greatly increased. The maximum error is 0.52% as 
compared to the 2.39% from the standard 
approach. 
Both the improved and standard GA optimization 
reach a relative error less than 1% when three 
points from the load curve are used. 
Thus an adequate optimization process using GA 
should be designed to find the global minimum 
over a wider power range of the induction motor 
rather than using a single load point. This can be 
achieved by incorporating at least two (improved 
approach) or three (standard approach) load points 
in the objective function defined by (5). 
CONCLUSION 
An efficient genetic algorithms approach for 
estimating the equivalent circuit parameters of 
squirrel cage induction motors is proposed. It is 
less sensitive to the number of input data sets than 
the standard approach. The sensitivity and 
accuracy of the approach are analyzed. The results 
show that to obtain relative error less than 1%, the 
proposed approach needs only two sets of electrical 
input data (voltage, current, power factor) and slip 
of the motor. For comparison, the standard 
technique needs at least three points from the 
motor load curve to obtain error less than 1%. The 
proposed GA approach has several advantages over 

the conventional methods for estimating the 
equivalent circuit parameters of induction motors. 
It is simple, less intrusive and yields practically the 
same results as when using the much more time-
consuming and complicated conventional methods. 
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