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Abstract: Interest for magneto-dielectric nanocomposites is motivated by their interesting properties [1]: high 
electrical resistivities, low losses in turbionar currents and hysteresis, endurance at high temperature, chemical 
stability. Such materials offer many appealing technological properties: can easily be fabricated in various shapes 
and dimensions with low technological losses and at low prices. These properties open the possibility of using these 
materials instead common magnetic materials for electric machines and other electromagnetic devices. In this 
context the simulation problems of this materials behaviour in electromagnetic fields is very important. This paper 
proposes a study on how the PRNG type influences the results obtained through a simulation models for 
magnetodielectric nanocomposites behavior in electromagnetic fields. The case study model allows the calculation of 
the Néel time in nanoparticles systems with magnetic dipole interactions. 
Keywords: superparamagnetism, magnetic nanoparticles system, stochastic model, pseudo-random number 
generator, simulation model, nanoparticle system 
 
 
INTRODUCTION 
Nowadays, in nanomagnetism the effort is 
becoming greater for understanding the 
phenomena at nanoscopic scale. For this purpose, 
the modelling and simulation, especially the 
stochastic modelling and simulation play a major 
role. So, random numbers are being used more and 
more in computational nanomagnetism. To 
simulate the random components, we use random 
numbers, with theoretical or empirical 
distributions. For generating these numbers 
through algorithms, we use random numbers 
uniformly distributed in the range (0, 1) generated 
by computer. The algorithm used for generating is 
called pseudo-random number generator (PRNG). 
The pseudorandom numbers are generated by 
deterministic algorithms, PRNG. An acceptable 
PRNG must yield sequences of numbers that are 
uniformly distributed, statistically independent, 
reproductible and non-repeating for any desired 
length. Thus, they are subjected to empirical and 
statistical tests, as follows: frequency test, serial 

test, autocorrelation test, run test, and chi-square 
test for goodness of fit [2] 
The quality requirements for a PRNG include a 
huge period length, good statistical properties, high 
speed, low memory usage, repeatability of jumping 
ahead and splitting facilities [2]. 
The pseudorandom numbers used in simulation 
algorithms in science and engineering [3], [4], [5], 
[6]. 
The random number generators (RNGs), like those 
in MATLAB, are algorithms for generating 
pseudorandom numbers with a specified 
distribution [2]. A given number may be repeated 
many times during the sequence, but the entire 
sequence is not repeated. 
A pseudorandom sequence is described by several 
properties [7]. A random stream is the sequence of 
values that are returned by a generator. The period 
of a sequence is its length, which is the number of 
values that it generates before the entire sequence 
is repeated. The state is the information that the 
generator keeps internally in order to create 
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successive values in the stream. The seed of a 
sequence is a single value defining its starting 
point. 
The MATLAB software offers six generator 
algorithms [7]. Table 1 summarizes the key 
properties of the available generator algorithms and 
the keywords used to create them [3]. 

Table 1. Generator algorithms in Matlab [7] 

 
 

Some of the generators (mcg16807, shr3cong, 
swb2712) provide for backwards compatibility with 
earlier versions of MATLAB [7]. Two generators 
(mrg32k3a, mlfg6331_64) provide explicit support 
for parallel random number generation. The 
remaining generator (mt19937ar) is primarily 
designed for sequential applications. Depending on 
the application, some generators may be faster, or 
return the values with more precision. 
THE CASE STUDY SIMULATION MODEL 
The case study simulation model is a 3D model 
(arrangement of the nanoparticle in the system), 
phenomenological-stochastic, that allows the 
simulation of the average Néel relaxation time in a 
system of nanoparticles dispersed in dielectric 
matrix. 
In this model [10], we consider a superposition of 
the nanoparticle size distributions, of the effective 
anisotropy constant distributions, and the 
nanoparticle disposal distributions in the sample. 
We take into account the dipolar magnetic 
interaction between the nanoparticles. With this 
model, we will realize advanced studies on 
understanding the phenomena at nanoscopic level 
and their implications in nanoparticles system 
applications, especially in electromagnetic devices.  
Our model [10] is reported to the display of the 
nanoparticles in a given quantity, and we assume 
that it is aleatory (Gaussian distribution). We 
consider a statistical angular distribution for the 
angles made at a given moment by the other j 
nanoparticles with the uniaxial anisotropy axis, 

and we are going to simulate a 3D initial 
geometrical state after the dispersion of the 
nanonanoparticles in the basic matrix. These 
distributions will be simulates by stochastic 
methods. 
So, for the N nanoparticles of the system, we 
simulate the distribution of diameters and 
anisotropy constants. The nanoparticle diameters 
are simulated as aleatory variables generated by a 
lognormal repartition law. The effective magnetic 
anisotropy constants of the nanoparticles, due to 
the surface effects, can be also simulated using a 
lognormal distribution. The variation of the 
anisotropy constants is justified [8] by the 
appearance of a surface anisotropy of the 
nanoparticles (a structural anisotropy resulted 
from the discontinuity of the magnetic interactions 
between individual spins found on the particle 
surface).  
The distributions related to the nanoparticle 
geometrical arrangements and magnetic moment 
orientations are Gaussian distributions simulated 
through the Box Mueller method [9]. 
The  model [10] starts from the idea of an Ising 
two-level model [11] of a spherical 
nanonanoparticle system with distribution of 
diameters and effective magnetic anisotropy effects. 
The energy of an i nanoparticle of the system in the 
iH

r
local magnetic field, oriented along its easy-

magnetisation axis, is a function of iθ , )(fE ii θ= , 
where θi is the angle between the direction of the i 
nanoparticle magnetic moment and the direction of 
the easy-magnetisation axis, along which the 
external magnetic field acts. In the Ei expression 
[6], we find the Mpi - i nanoparticle magnetic 
moment, vi - volume of the i nanoparticle, Kieff - the 
effective anisotropy constant of the nanoparticle, 
and Hi, local magnetic field in direction of easy 
magnetisation axis of nanoparticle. If we take into 
account the interactions of nanoparticles, we can 
consider that the Hi field is made of two 
contributions: the external magnetic field H that 
acts along the easy-magnetisation direction, and 
the projection along the external field of the dipolar 
magnetic field created on the i nanoparticle, due to 
the dipolar magnetic interactions of the 
nanonanoparticles.  

dii HHH +=                              (1) 
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The magnetic behaviour of the nanoparticles in a 
dielectric matrix is determined by the Néel 
relaxation processes (nanoparticle magnetic 
moment rotation), characterised by the Néel 
relaxation time τN, whose expression for the non-
interactive case is given, for example, in [12], 
because the Brown relaxation processes 
(nanoparticle rotation in the solid dielectric 
matrix), characterised by Brown relaxation time τB 
[12] in blocked.  
In these conditions, the Mpi magnetic moment of a 
given i nanoparticle can be in one of the two 
equilibrium states, with the minimum energies 
i

1minE and i
2minE determined by θi = 0 and θi = π. 

These minimums are separated by the maximum 
energy iEmax .  
In the presence of thermal fluctuations, the 
magnetic moment of an i nanoparticle in steady 
state, with minimal energy iE 1min , can 
spontaneously change its direction in the 
minimum energy state iE 2min . The energy barriers 
for these re-orientations are i

bE 12  and i
bE 21 .                       

We consider that the system is in thermal 
equilibrium. The average number of nanoparticles 
that pass in time unit from a minimum to another 

minimum is proportional with ⎟⎟
⎠
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kB is the Boltzmann constant, and T is the 
temperature. If N1 is the average number of 
nanoparticles in the state with minimum average 
energy <Emin1>, N2 is the number of nanoparticles 
in the minimum average energy <Emin2>, the 
average energy barriers ><−>=< 1minmax12 EEEb  
and ><−>=< 2minmax21 EEE , then the equilibrium 
condition shall be: 
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 <x> is the notation for the statistical average for x. 
For a very large number N of nanoparticles, the 
arithmetical average estimator of x tends to the 
statistical average of x.                                             
If N is the total number of nanoparticles of the 
system:    
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The difference n = N1 – N2 determines the 
resultant magnetic moment of the system. The 
total magnetic moment of the system in a given 
moment is proportional with n. Within an 
infinitesimal time period, the n difference becomes: 
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where f is a factor measured in s-1. 
Having in view the relations between N1, N2 and 
n, and applying a simple calculation artifice, we 
can write:                                                                  
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(5)     

Starting from the equation (5), at usual 
temperatures much higher than the blocking 
temperature and very close to the equilibrium, the 
magnetic relaxation process of the system is 
governed by a differential equation which offers the 
solution that represents the exponential evolution 
in time of the residual magnetisation of the system 
with the Néel relaxation time:   
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where <Eb> is the average energy barrier and f0 = 
2f.  
In the expression of energy barriers for the 
magnetic moments, we find re-orientations of the 
dipolar field of the nanoparticle Hdi. To calculate 
the Hdi and the average dipolar field <Hd> , we use 
a stochastic method [13].  
Using this model, we will perform a series of 
advanced studies to understand the effects of the 
distribution of particle sizes, the surface anisotropy 
and the anisotropy distribution, as well as the role 
of the dipole interaction on the magnetic properties. 
These studies will enhance our understanding of 
the magnetic properties of the nanoparticle 
systems, which is now far from being complete. 
RESULTS AND INTERPRETATIONS 
The simulations were made for a system of 14 335 
spherical nanoparticles of magnetite, with the 
spontaneous magnetization Ms= mA /1046.4 5⋅ , 
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dispersed in solid dielectric matrix, with average 
diameter of 10 nm, dispersion of the aleatory 
variable lnd 0.0625, average effective magnetic 
anisotropy constant of 10000 J/m3, and dispersion 
of the aleatory variable ln Keff 1.21. The spatial 
distribution is simulated with Box Muller 
transformation [13], [14]. The spatial distribution 
parameters are: angular distribution dispersion for 
magnetic moments orientation: 0.25, dispersion of 
the spatial distribution of the nanoparticles: 0.01 
(uniform arrangement of the nanoparticles in 
solution). 
To generate series of random numbers with various 
distributions (lognormal, Gaussian) used in the 
model, we applied stochastic methods, and we 
checked the generated series of numbers with the 
concordance statistical criterion Kolmogorov-
Smirnov [9], using from Matlab the function 
kstest. In case the series passes the test, the 
parameter H of this function returns the value 0; 
otherwise, the value is 1. 
For simulations, we used 3 types of pseudo-random 
number generators: Mersenne Twister 
(mt19937ar), multiplicative congruential 
generator (mcg16807) and shift-register generator 
summed with linear congruential generator. Thus, 
we simulated the average Néel relaxation time for 
the nanoparticle system and the average effective 
magnetic relaxation time at various volume 
fractions of nanoparticles in solution, for seed=5. 
The graphical results are presented in Figure 1.  

 
Figure 1. The average Néel relaxation time versus the 

nanoparticle volume fraction, for generator seed=5 
In the Figure 1 can be seen that the type of pseudo-
random number generators influences the average 
value of the Néel relaxation time and the average 

effective magnetic relaxation time of the 
nanoparticles. Closer to reality are the results 
simulated with the Mersenne Twister generator. 
Most of the literature in the field [16], [17] claims 
an increase of the magnetic relaxation time with 
increasing the concentration of nanoparticles, at 
low concentrations. 
CONCLUSIONS 
A way to check the results of a stochastic 
simulation is to rerun the simulation with two or 
more different generator algorithms, and the 
MATLAB software's generator choice provides 
you with the means to do that. It can be seen that 
the results do not differ greatly in case we work 
with different PRNGs, but a more realistic 
dependence can be seen when working with the 
Mersenee Twister generator. 
According to the literature [see the References] and 
the researchers in the field, the current PRNG’s 
state-of-the-art for simulation work is the so-called 
“Mersenne Twister” (MT).  
It’s hard to imagine any scientific application 
failing with this generator, although it has a huge 
period. It has also been adapted to many languages, 
and it is the default RNG in research. 
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