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INTRODUCTION 
Differential equations are mathematically studied 
from several different perspectives, mostly 
concerned with their solutions—the set of 
functions that satisfy the equation. Only the 
simplest differential equations admit solutions 
given by explicit formulas; however, some 
properties of solutions of a given differential 
equation may be determined without finding their 
exact form. If a self-contained formula for the 
solution is not available, the solution may be 
numerically approximated using computers. In 
general, it is not possible to obtain the analytical 
solution of a system of differential equations, 
obtained from obstacle, unilateral, moving and free 
boundary-value problems and problems of the 
defection of plates and in a number of other 
scientific applications, while many numerical 
methods have been developed to determine 
solutions with a given degree of accuracy. In the 
present paper we discuss the history, classification 
and numerical solution of differential equations. 
Here we are merely concerned about the solution of 
these boundary-value problems by application of 
spline functions. 
We include here one paper based on application of 
various spline functions to solve different systems 
of differential equations. The paper is organized as 
follows: in section 2, we will discuss a brief history 

of differential equations.  In section 3, we consider 
the general introduction of differential equations. 
In section 4, we discuss about types of differential 
equations. In section 5, subdivision of differential 
equations, in section 6, initial & boundary value 
problems, in section 7 types of boundary value 
problems, in section 8 differential equations 
associated with physical problems arising in 
engineering is discussed. In section 9, numerical 
solution of differential equations, in section 10, 
general introduction to spline, in section 11 spline 
solution of differential equations and finally in 
section 12  the conclusion and further development 
is given. 
HISTORY OF DIFFERENTIAL EQUATIONS  
The study of differential equations is a wide field. 
Many of the laws in physics, chemistry, 
engineering, biology and economics are based on 
empirical observations that describe changes in the 
states of systems. Mathematical models that 
describe the state of such systems are often 
expressed in terms of not only certain system 
parameters but also their derivatives. Such 
mathematical models, which use differential 
calculus to express relationship between variables, 
are known as differential equations. 
The history of differential equations traces the 
development of differential equations from 
calculus, which was independently invented by 
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English physicist Isaac Newton (1665) and 
German mathematician Gottfried Leibnitz (1674). 
The term differential equation was coined by 
Leibnitz in 1676 for a relationship between the two 
differentials dx and dy for the two variables x and 
y. Newton solved his first differential equation in 
1676 by the use of infinite series, eleven years after 
his discovery of calculus in 1665. Leibnitz solved 
his first differential equation in 1693, the year in 
which Newton first published his results. Hence, 
1693 marks the inception for the differential 
equations as a distinct field in mathematics [1]. 
The different phases of 17th, 18th and 19th Centuries 
played some crucial role in the history of 
differential equations. In the year 1695 the problem 
of finding the general solution of what is now 
called Bernoulli’s equation was proposed by 
Bernoulli and it was solved by Leibnitz and Johann 
Bernoulli by different methods. In further 
development 1724 was important to the early 
history of ordinary differential equations. Ordinary 
differential equation acquired its significance when 
it was introduced in 1724 by Jacopo Francesco, 
Count Ricatti of Venice in his work in acoustics. 
Further in the year of 1739 Leonhard Euler solves 
the general homogeneous linear ordinary 
differential equation with constant coefficients. 
L’Hospital came up with separation of variables in 
1750, and it is now the physicist’s handiest tool for 
solving partial differential equations. Since its 
introduction in 1828, Green’s functions have 
become a fundamental mathematical technique for 
solving boundary-value problems. In 1890 
Poincare [2] gave the first complete proof of the 
existence and uniqueness of a solution of the 
Laplace Equation for any continuous Dirichlet 
boundary condition.  
In 20th Century a lot of quality work has been done 
in the field of differential equations, but the major 
concern was the analytic and computational 
solution of differential equations. In last few 
decades numerical analysis of differential equations 
has become a major topic of study. In view of this, 
this thesis gives a small step towards the 
development of computational analysis of ordinary 
differential equations, which have lot of utilities in 
the field of science and engineering. 

GENERAL INTRODUCTION OF DIFFERENTIAL 
EQUATIONS 
There is difference between differential equations 
and ordinary equations of mathematics. The 
differential equations, in addition to variables and 
constants, also contain derivatives of one or more 
of the variables involved. In general, a differential 
equation is an equation which involves the 
derivatives of an unknown function represented by 
a dependent variable. It expresses the relationship 
involving the rates of change of continuously 
changing quantities modeled by functions and are 
used whenever a rate of change (derivative) is 
known. A solution to a differential equation is a 
function whose derivatives satisfy the equation. 
The order and degree are two major terms if we 
discuss about a differential equation. The order of a 
differential equation is that of the highest 
derivative that it contains. For instance, a second-
order differential equation contains only second 
and first derivatives. If a differential equation can 
be rationalized and cleared of fraction with regard 
to all derivatives present, the exponent of the 
highest order derivative is called the degree of the 
differential equation. 
TYPES OF DIFFERENTIAL EQUATIONS 
The Differential equations can be categorized in 
ordinary differential equations (ODE), partial 
differential equation (PDE), delay differential 
equation (DDE), stochastic differential equation 
(SDE) and differential algebraic equation (DAE) 
which are defined as follows:  
(a) An ordinary differential equation (ODE) is a 

differential equation in which the unknown 
function is a function of a single independent 
variable.  

(b) A partial differential equation (PDE) is a 
differential equation in which the unknown 
function is a function of multiple independent 
variables and their partial derivatives.  

(c) A delay differential equation (DDE) is a 
differential equation in which the derivative of 
the unknown function at a certain time is given 
in terms of the values of the function at 
previous times.  

(d) A stochastic differential equation (SDE) is a 
differential equation in which one or more of 
the terms are a stochastic process, thus 
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resulting in a solution which is itself a 
stochastic process.  

(e) A differential algebraic equation (DAE) is a 
differential equation comprising differential 
and algebraic terms, given in implicit form.  

An ordinary differential equation (ODE) implicitly 
describes a function depending on a single variable 
and the ODE expresses a relation between the 
solution and one or more of its derivatives. Beside 
the ODE, usually one or more additional (initial) 
conditions are needed to determine the unknown 
function uniquely.  
A  Partial differential equation (PDE) is a relation 
involving an unknown function of at least two 
independent variables and its partial derivatives 
with respect to those variables. Partial  differential  
equations are used to formulate and solve  
problems that involve unknown functions of  
several variables, such as the propagation of  sound 
or heat, electrostatics, electrodynamics, fluid flow, 
elasticity or more generally any process that is 
distributed  in  space  or  distributed  in  space  and 
time. In general, A partial differential equation 
(PDE) is an equation involving  functions and  
their  partial  derivatives. 
SUBDIVISION OF DIFFERENTIAL EQUATIONS 
Each of types of differential equations mentioned 
above is divided into two subcategories - linear and 
nonlinear. A differential equation is linear if it 
involves the unknown function and its derivatives 
only to the first power; otherwise the differential 
equation is nonlinear. Thus if y’ denotes the first 
derivative of y, then the equation y’=y is linear, 
while the equation y’=y2 is nonlinear. Solutions of 
a linear equation in which the unknown function 
or its derivative or derivatives appear in each term 
(linear homogeneous equations) may be added 
together or multiplied by an arbitrary constant in 
order to obtain additional solutions of that 
equation, but there is no general way to obtain 
families of solutions of nonlinear equations, except 
when they exhibit symmetries. Linear equations 
frequently appear as approximations to nonlinear 
equations, and these approximations are only valid 
under restricted conditions. 
INITIAL & BOUNDARY VALUE PROBLEMS  
Ordinary differential equations (ODEs) describe 
phenomena that change continuously. They arise 

in models throughout mathematics, science, and 
engineering. By itself, a system of ODEs has many 
solutions. Commonly a solution of interest is 
determined by specifying the values of all its 
components at a single point x=a. This is an initial 
value problem (IVP). However, in many 
applications a solution is determined in a more 
complicated way. A boundary value problem 
(BVP) specifies values or equations for solution 
components at more than one x. Unlike IVPs, a 
boundary value problem may not have a solution, 
or may have a finite number, or may have 
infinitely many solutions. 
Initial value problem has all of the conditions 
specified at the same value of the independent 
variable in the equation (and that value is at the 
lower boundary of the domain, thus the term 
“initial” value). On the other hand, a boundary 
value problem has conditions specified at the 
extremes of the independent variable. For example, 
if the independent variable is time over the domain 
[0,1], an initial value problem would specify a 
value of y(t) at time 0, while a boundary value 
problem would specify values for y(t) at both  t = 0 
and  t = 1.  
If the problem is dependent on both space and time, 
then instead of specifying the value of the problem 
at a given point for all time the data could be given 
at a given time for all space. For example, the 
temperature of an iron bar with one end kept at 
absolute zero and the other end at the freezing 
point of water would be a boundary value problem. 
Whereas in the middle of a still pond if somebody 
taps the water with a known force that would 
create a ripple and give us an initial condition. 
TYPES OF BOUNDARY VALUE PROBLEMS    
(i)  Dirichlet Boundary Condition: 
If the boundary gives a value to the problem then it 
is a Dirichlet boundary condition. For example if 
one end of an iron rod held at absolute zero then 
the value of the problem would be known at that 
point in space. A Dirichlet boundary condition 
imposed on an ordinary differential equation or a 
partial differential equation specifies the values a 
solution is to take on the boundary of the domain. 
The question of finding solutions to such equations 
is known as the Dirichlet problem. 
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For example, in the case of an ordinary differential 
equation such as 

                  1=y5+
dx

yd
2

2

                           (1) 

on the interval [0,1] the Dirichlet boundary 
conditions take the form 

y(0)= 1   and y(1)= 2                     (2) 
where 1 and 2 are given numbers. 
(ii)  Neumann Boundary Condition: 
If the boundary gives a value to the normal 
derivative of the problem then it is a Neumann 
boundary condition. For example if one end of an 
iron rod had a heater at one end then energy would 
be added at a constant rate but the actual 
temperature would not be known. A Neumann 
boundary condition imposed on an ordinary 
differential equation or a partial differential 
equation specifies the values the derivative of a 
solution is to take on the boundary of the domain. 
In the case of ordinary differential equation such as 

1=y5+
dx

yd
2

2

 

on the interval [0, 1] the Neumann boundary 
conditions take the form 

y’(0)= 1 and y’(1)= 2                    (3) 
where 1 and 2 are given numbers. 
(iii)   Cauchy Boundary Condition: 
If the boundary has the form of a curve or surface 
that gives a value to the normal derivative and the 
problem itself then it is a Cauchy boundary 
condition. A Cauchy boundary condition imposed 
on an ordinary differential equation or a partial 
differential equation specifies both the values a 
solution of a differential equation is to take on the 
boundary of the domain and the normal derivative 
at the boundary. It corresponds to imposing both a 
Dirichlet and a Neumann boundary condition. 

1=y5+
dx

yd
2

2

 

Cauchy boundary conditions can be understood 
from the theory of second order, ordinary 
differential equations, where to have a particular 
solution one has to specify the value of the function 
and the value of the derivative at a given initial or 
boundary point, i.e.,  

y(a)= 1  and y’(a)= 2                   (4) 
where 1 and 2 are given numbers and a is a 
boundary or initial point. 

DIFFERENTIAL EQUATIONS ASSOCIATED 
WITH PHYSICAL PROBLEMS ARISING IN 
ENGINEERING  
As the world turns, things change, mountains 
erode, river beds change, machines break down, the 
environment becomes more polluted, populations 
shift, economics fluctuate, technology advances. 
Hence any quantity expressible mathematically 
over a long time must change as a function of time. 
As a function of time, relatively speaking, there are 
many quantities which change rapidly, such as 
natural pulsation of a quartz crystal, heart beats, 
the swing of a pendulum, chemical explosions, etc. 
When we get down to the business of quantitative 
analysis of any system, our experience shows that 
the rate of change of a physical or biological 
quantity relative to time has vital information 
about the system. It is this rate of change which 
plays a central role in the mathematical 
formulation of most of the physical and biological 
models amenable to analysis.  
Engineering problems that are time-dependent are 
often described in terms of differential equations 
with conditions imposed at single point 
(initial/final value problems); while engineering 
problems that are position dependent are often 
described in terms of differential equations with 
conditions imposed at more than one point 
(boundary value problems). Some of the 
motivational examples encountering in many 
engineering fields are as follows: 
(i) Coupled L-R electric circuits 
(ii) Coupled systems of springs 
(iii) Motion of a particle under a variable force field 
(iv) Newton’s second law in dynamics (mechanics)  
(v) Radioactive decay in nuclear physics  
(vi) Newton’s law of cooling in thermodynamics.  
(vii) The wave equation   
(viii) Maxwell’s equations in electromagnetism  
(ix) The heat equation in thermodynamics  
(x) Laplace’s equation, which defines harmonic 

functions 
(xi) The beam deflections equation 
(xii) The draining and coating flows equation 
NUMERICAL SOLUTION OF DIFFERENTIAL 
EQUATIONS 
The study of differential equations is a wide field in 
both pure and applied mathematics. Pure 
mathematicians study the types and properties of 
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differential equations, such as whether or not 
solutions exist, and should they exist, whether they 
are unique.  
Applied mathematicians emphasize differential 
equations from applications, and in addition to 
existence/uniqueness questions, are also concerned 
with rigorously justifying methods for 
approximating solutions. Physicists and engineers 
are usually more interested in computing 
approximate solutions to differential equations. 
These solutions are then used to simulate celestial 
motions, simulate neurons, design bridges, 
automobiles, aircraft, sewers, etc. Often, these 
equations do not have closed form solutions and are 
solved using numerical methods. 
Mathematicians also study weak solutions (relying 
on weak derivatives), which are types of solutions 
that do not have to be differentiable everywhere. 
This extension is often necessary for solutions to 
exist, and it also results in more physically 
reasonable properties of solutions, such as shocks in 
hyperbolic (or wave) equations. 
Numerical techniques to solve the boundary value 
problems include some of the following methods: 
- Shooting Methods: These are initial value 
problem methods. In this method, we convert the 
given boundary value problem to an initial value 
problem by adding sufficient number of conditions 
at one end and adjust these conditions until the 
given conditions are satisfied at the other end. 
- Finite Difference Methods:In finite difference 
method (FDM), functions are represented by their 
values at certain grid points and derivatives are 
approximated through differences in these values. 
For the finite difference method, the domain under 
consideration is represented by a finite subset of 
points. These points are called “nodal points” of 
the grid. This grid is almost always arranged in 
(uniform or non-uniform) rectangular manner. 
The differential equation is replaced by a set of 
difference equations which are solved by direct or 
iterative methods. 
- Finite Element Methods: In finite element 
method (FEM), functions are represented in terms 
of basis functions and the ODE is solved in its 
integral (weak) form. In this method the domain 
under consideration is partitioned in a finite set of 
elements. In this the differential equation is 

discretized by using approximate methods with the 
piecewise polynomial solution [3]. 
- Spline Based Methods: In spline based 
methods, the differential equation is discretized by 
using approximate methods based on spline. The 
end conditions are derived for the definition of 
spline. The algorithm developed not only 
approximates the solutions, but their higher order 
derivatives as well. 
GENERAL INTRODUCTION TO SPLINE 
Usually a spline is a piecewise polynomial function 
defined in a region D, such that there exists a 
decomposition of D into sub-regions in each of 
which the function is a polynomial of some degree 
m. Also the function, as a rule, is continuous in D, 
together with its derivatives of order up to (m-1). 
Thus, a spline function of order m, SΔ(x), 
interpolating to a function u(x) defined on [a,b] is 
such that: 
(i) In each subinterval [xj-1, xj]=1,2,….,N, SΔ(x) 

is a polynomial of degree at most m. 
(ii) The first, second, third... (m-1)th derivatives of 

SΔ(x) are continuous on [a,b]. 
In its most general form a polynomial spline SΔ(x) 
consists of polynomial pieces in [xi, xi+1], 
i=0,1,2,….N-1 where the given N points are called 
knots. The vector (x0,….xN-1) is called a knot vector 
for the spline. If the knots are equidistantly 
distributed in the interval [a,b] we say the spline is 
uniform, otherwise we say it is non-uniform. 
If the polynomial pieces on the subintervals [xi, 
xi+1], i=0,1,2,….N-1, all have degree at most n, then 
the spline is said to be of degree ≤ n (or of order 
n+1). 
Examples: Suppose the interval [a,b] is [0,3] and 
the subintervals are [0,1), [1,2), and [2,3]. Suppose 
the polynomial pieces are to be of degree 2, and the 
pieces on [0,1) and [1,2) must join in value and first 
derivative (at x=1) while the pieces on [1,2) and 
[2,3] join simply in value (at x=2). This would 
define a type of spline SΔ(x) for which 

1<x≤0xx4+1=xS 2
Δ ,--)(  

1<x≤12=xSΔ ,x)(  
3≤x≤2x+x2=xS 2

Δ ,-)(  
would be a member of that type, and 

1<x≤0=xS 2
Δ ,2x--2)(  

2<x≤1x+x1=xS 2
Δ ,6-)(  
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3≤x≤2xx+1=xS 2
Δ ,2--)(  

would also be a member of that type. 
The simplest spline has degree 0. It is also called a 
step function. The next simplest spline has degree 1. 
It is called a linear spline. The spline of degree 2 is 
called quadratic spline. 
The literature of splines is replete with names for 
special types of splines. These names have been 
associated with the choices made for representing 
the spline or the choices made in forming the 
extended knot vector or any special conditions 
imposed on the spline or the choice of introducing a 
parameter such as: 
(i) B – splines is obtained using basis B-splines as 

basis functions for the entire spline . 
(ii) Bezier splines is obtained using Bernstein 

polynomials as employed by Pierre Bézier to 
represent each polynomial piece.  

(iii) Uniform splines is obtained using single knots 
for  Cn-1 continuity and spacing these knots 
evenly on [a,b]. 

(iv) Non-uniform splines is obtained using knots 
with no restriction on spacing. 

(v) Natural splines is obtained enforcing zero 
second derivatives at end values a and b.  

(vi) Interpolating splines are requiring that given 
data values be on the spline. 

(vii) Polynomial spline is a piecewise polynomial 
function defined in a region D, such that there 
exists a decomposition of D into sub-regions in 
each of which the function is a polynomial of 
some degree m. 

The connecting polynomials could be of any degree 
and therefore we have different types of spline 
functions such as linear, quadratic, cubic, quartic, 
quintic, sextic, septic, octic, nonic etc. They are also 
known as ‘polynomial spline’ function. 
(viii) Nonpolynomial spline  
To deal effectively with problems we introduce 
‘spline functions’ containing a parameter . These 
are ‘non-polynomial splines’. These ‘splines’ belong 
to the class C2 and reduce into polynomial splines as 
parameter →0 [4, 5]. 
SPLINE SOLUTION OF DIFFERENTIAL 
EQUATIONS 
In the study of problems arising in astrophysics, 
problem of heating of infinite horizontal layer of  
fluid, eigenvalue problems arising in thermal 

instability, obstacle, unilateral, moving and free 
boundary-value problems, problems of the defection 
of plates and in a number of other scientific 
applications, we find a system of differential 
equations of different order with different boundary 
conditions. In general, it is not possible to obtain 
the analytical solution of them; we usually resort to 
some numerical methods for obtaining an 
approximate solution of these problems.  
In the present paper various spline techniques for 
solving boundary value problems in ordinary 
differential equations are briefly discussed. It 
contains crux of various recent research papers 
based on application of quadratic, cubic, quartic, 
quintic, sextic, septic, octic, nonic and other higher 
order spline functions to solve different systems of 
ordinary differential equations. The recent spline 
techniques, which are used frequently in various 
fields like; biology, physics and engineering, are 
considered in this paper.   
Quadratic Spline Techniques to Solve Boundary 
Value Problems: 
A quadratic spline function SΔ(x), interpolating to 
a function u(x) defined on [a,b] is such that 
(i) In each subinterval [xj-1, xj]=1,2,….,N, SΔ(x) 

is a polynomial of degree at most two. 
(ii) The first derivative of SΔ(x) is continuous on 

[a,b]. 
Considering the paper [6] by Siraj-ul-Islam et al. 
having the system of second-order boundary value 
problem of the type 

( ),                               
" ( ) ( ) ( ) ,       

( ),                               

f x a x c
y g x y x f x r c x d

f x d x b

≤ ≤⎧
⎪= + + ≤ ≤⎨
⎪ ≤ ≤⎩

      (5)  

with the boundary conditions         
                     1 2( )  y( ) =y a and bα α=                (6) 
and assuming the continuity conditions of y and y’  
at c and d. Here, f and g are continuous functions 
on [a,b] and [c,d] respectively. The parameters r, 
1, 2 are real finite constants.  
In this research article, quadratic non-polynomial 
spline functions are used to develop a numerical 
method for obtaining smooth approximations to the 
solution of a system of second-order boundary-
value problems of the type (5). The new method is 
of order two for arbitrary  and β if 
2 2 1 0α β+ − =  and method of order 4 if 1/12α =  
along with 2 2 1 0.α β+ − =   
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Cubic Spline Techniques to Solve Boundary 
Value Problems: 
A cubic spline function SΔ(x) of class C2[a,b] 
interpolating to a function u(x) defined on [a,b] is 
such that 
(a) In each interval [xj-1, xj]=1,2,….,N, SΔ(x) is a 

polynomial of degree at most three,  
(b) The first and second derivatives of SΔ(x) are 

continuous on [a,b]. 
Considering the article [7] by E. A. Al-Said having 
the system of second-order boundary value problem 
of the type 

            
( ),                               

" ( ) ( ) ( ) ,       
( ),                               

f x a x c
u g x u x f x r c x d

f x d x b

≤ ≤⎧
⎪= + + ≤ ≤⎨
⎪ ≤ ≤⎩

         (7) 

with the boundary conditions                    
                 1 2( )  ( ) =u a and u bα α=                  (8) 

and assuming the continuity conditions of u and  
u’ at c and d. Here, f and g are continuous 
functions on [a,b] and [c,d], respectively. The 
parameters r, 1, 2 are real finite constants.  
The main purpose of this article is to use uniform 
cubic spline functions to develop some consistency 
relations which are then used to develop a 
numerical method for computing smooth 
approximations to the solution and its derivatives 
for a system of second-order boundary-value 
problems of the type (7). In this paper the author 
has shown that the present method gives 
approximations which are better than those 
produced by other collocation, finite-difference, and 
spline methods.  
Quartic Spline Techniques to Solve Boundary 
Value Problems: 
A quartic spline function SΔ(x), interpolating to a 
function u(x) defined on [a,b] is such that 
(i) In each subinterval [xj-1, xj]=1,2,….,N,, SΔ(x) 

is a polynomial of degree at most four. 
(ii) The first, second and third derivatives of SΔ(x) 

are continuous on [a,b]. 
Considering the paper by E. A. Al-Said [8] having 
the system of fourth order boundary value problem 
of the type      

( )
( ),                               
( ) ( ) ( ) ,       
( ),                               

iv

f x a x c
u g x u x f x r c x d

f x d x b

≤ ≤⎧
⎪= + + ≤ ≤⎨
⎪ ≤ ≤⎩      

(9)                                      

with the boundary conditions                    

1 2

1 2

( ) ( ) =  "( ) "( )= ,
( ) ( ) =  "( ) "( )= ,
u a u b and u a u b
u c u d and u c u d

α α
β β

= =
= =     

(10)               

where f and g are continuous functions on [a,b] and 
[c,d] respectively. The parameters r, i and βi, i=1,2 
are real constants. 
In the this paper, the authors have used the quartic 
spline functions to develop a new numerical 
technique for obtaining smooth approximations of 
the solution of  (9) and its first, second and third 
derivatives. They derived the consistency relations 
and developed the new quartic spline method. The 
convergence analysis of the method, the numerical 
experiments and comparison with other methods 
are discussed. 
Quintic Spline Techniques to Solve Boundary 
Value Problems: 
A quintic spline function SΔ(x), interpolating to a 
function u(x) on [a,b] is defined as: 
(i) In each subinterval [xj-1, xj]=1,2,….,N, SΔ(x) 

is a polynomial of degree at most five. 
(ii) The first, second, third and fourth derivatives 

of SΔ(x) are continuous on [a,b]. 
To be able to deal effectively with such problems we 
introduce ‘spline functions’ containing a 
parameter ω. These are ‘non-polynomial splines’ 
defined through the solution of a differential 
equation in each subinterval. The arbitrary 
constants are being chosen to satisfy certain 
smoothness conditions at the joints. These ‘splines’ 
belong to the class C4[a,b] and reduce into 
polynomial splines as parameter ω→0. A paper 
based on quintic spline is as follows - 
Considering the paper by Arshad Khan and Tariq 
Aziz [9] having a third-order linear and non-linear 
boundary value problem of the type 

  "'( ) ( , ),  a x b,y x f x y= ≤ ≤              (11) 
Subject to     

 1 2 3y(a)=k , '( ) , ( ) .y a k y b k= =            (12) 
In this paper, the authors have derived a fourth 
order method to solve third-order linear and non-
linear BVPs using quintic splines. They presented 
the formulation of their method for third-order 
linear and non-linear BVPs. To retain the 
pentadiagonal structure of the coefficient matrix, 
they derived fourth order boundary equations. 
In this paper, the methods discussed are tested on 
two problems from the literature [10], and absolute 
errors in the analytical solutions are calculated. 
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The results confirm the theoretical analysis of the 
methods. For the sake of comparisons, the authors 
also tabulated the results by the method of Caglar 
et al. [11]. We have also applied nonpolynomial 
quintic spline [12-15] to solve second order linear 
differential equations. 
Sextic Spline Techniques to Solve Boundary Value 
Problems: 
A sextic spline function SΔ(x), interpolating to a 
function u(x) on [a,b] is defined as: 
(i) In each interval [xj-1, xj]=1,2,….,N, SΔ(x) is a 
polynomial of degree at most six. 
(ii) The first fifth derivatives of SΔ(x) are 
continuous on [a,b]. 
(iii) SΔ(xi)=u(xi), i=0(1)N+1. 
Consider the paper [16] having a system of second-
order boundary-value problem of the type (7) and 
(8). The authors J. Rashidinia et al. have developed 
a new numerical method for solving a system of 
second-order boundary-value problems based on 
sextic spline. They have shown that the results 
obtained are very encouraging and their method 
has better numerical results than those produced 
by collocation, finite difference and splines methods 
when solving (7). 
Here the authors have considered the obstacle 
boundary-value problem of finding y such that, on 

[0, ],πΩ =  

         
" ( ),

( ) ( ),
[ " ( )][ ( ) ( )] 0,

(0) ( ) 0,

y f x
y x x
y f x y x x
y y

ψ
ψ

π

− ≥
≥

− − =
= =

           (13) 

Where f(x) is a given force acting on the string and  
Ψ(x) is the elastic obstacle. The authors have 
studied problem (13) in the framework of a 
variational inequality approach. It can be shown 
(see for example [17-21]) that the problem (13) is 
equivalent to the variational inequality problem: 
         ( , ) ( , ),   for all  ,a y v y f v y v K− ≥ − ∈  
where K is the closed convex set 

{ }1
0: ( ),   .K v v H v onψ= ∈ Ω ≥ Ω This equivalence 

has been used to study the existence of a unique 
solution of (13). 
Septic Spline Technique to Solve Boundary Value 
Problems: 
A septic spline function SΔ(x), interpolating to a 
function u(x) on [a,b] is  defined as: 

(i) In each interval [xj-1, xj], SΔ(x) is a polynomial 
of degree at most seven. 

(ii) The first six derivatives of SΔ(x) are 
continuous on [a,b]. 

(iii) SΔ(xi)=u(xi), i=0(1)N+1. 
In a nonpolynomial septic spline we introduce a 
parameter k. The arbitrary constants are being 
chosen to satisfy certain smoothness conditions at 
the joints. This ‘spline’ belongs to the class C6[a,b] 

and reduces into polynomial splines as parameter 
k→0. 
Considering the paper by Ghazala Akram et al. 
[22] having the system of sixth-order boundary 
value problem of the type 

    

(6)

0 1

(1) (1)
0 1

(2) (2)
0 1

( ) ( ) ( ) ( ), [ , ],
( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

y x f x y x g x x a b
y a y b

y a y b

y a y b

α α

γ γ

δ δ

⎫+ = ∈
⎪= = ⎪
⎬

= = ⎪
⎪= = ⎭

 (14)               

where ,i iα γ and , 0,1i iδ = are finite real constants 
and the functions f(x) and g(x) are continuous on 
[a,b]. 
In the present paper, the authors have applied non-
polynomial spline functions that have a polynomial 
and trigonometric parts to develop a new 
numerical method for obtaining smooth 
approximations to the solution of such system of 
sixth-order differential equations. 
The nonpolynomial spline function, under 
consideration has the form 

Tn=span{ }2 3 4 51, , , , , , cos( ), sin( ) ,x x x x x kx kx  
where kis taken to be the frequency of the 
trigonometric part of the spline function. It is to be 
noted that k can be real or pure imaginary which is 
used to raise the accuracy of the method. In this 
paper using derivative continuities at knots, the 
consistency relation between the values of spline 
and its sixth order derivatives at knots is 
determined. The nonpolynomial spline solution 
approximating the analytic solution of the BVP 
(14) is determined, using the consistency relation 
involving the sixth order derivatives and the values 
of the spline along with the end conditions. The 
error bound of the solution is also determined. 
The method presented in this paper has also been 
proved to be second order convergent. Two 
examples are considered for the numerical 
illustrations of the method developed. The method 
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is also compared with those developed by El-Gamel 
et al. [23] and Siddiqi and Twizell [24] as well and 
is observed to be better. 
Octic Spline Technique to Solve Boundary Value 
Problems: 
An octic spline function SΔ(x), interpolating to a 
function u(x) on [a,b] defined as: 
(i) In each interval [xj-1, xj]=1,2,….,N, SΔ(x) is a 

polynomial of degree at most eight. 
(ii) The first seventh derivatives of SΔ(x) are 

continuous on [a,b]. 
(iii) SΔ(xi)=u(xi), i=0(1)N+1. 
Considering the paper by S. S. Siddiqi et al. [25] 
having the system of eighth-order boundary value 
problem of the type 

(viii)

(ii) (iv) (vi)
0 2 4 6

(ii) (iv) (vi)
0 2 4 6

( ) ( )         ,
( ) ,   ( ) ,   ( ) ,   ( ) ,

( ) ,   ( ) ,   ( ) ,   ( ) ,

y x y x a x b
y a A y a A y a A y a A

y b B y b B y b B y b B

φ ψ+ + −∞< ≤ ≤ <∞

= = = =

= = = =

  (15) 

where y=y(x) and Ф(x) and φ(x) are continuous 
function defined in the interval x∈ [a,b]. Ai and Bi, 
i=0,2,4,6 are finite real constants. 
In this paper, the authors have used octic spline to 
solve the problem of the type (15). The spline 
function values at the midknots of the interpolation 
interval and the corresponding values of the even-
order derivatives are related through consistency 
relations. The algorithm developed approximates 
the solutions, and their higher-order derivatives, of 
differential equations. Four numerical illustrations 
are given to show the practical usefulness of the 
algorithm developed. It is observed that this 
algorithm is second-order convergent. 
Nonic Spline Technique to Solve Boundary Value 
Problems: 
A nonic spline function SΔ(x), interpolating to a 
function u(x) on [a,b] defined as: 
(i) In each interval [xj-1, xj]=1,2,….,N, SΔ(x) is a 

polynomial of degree at most nine. 
(ii) The first eighth derivatives of SΔ(x) are 

continuous on [a,b]. 
(iii) SΔ(xi)=u(xi), i=0(1)N+1. 
Considering the paper [26] having the system of 
eighth-order boundary value problem of the type 

   

(8 )

0 1

(1) (1)
0 1

( 2 ) ( 2 )
0 1

(3) ( 2 )
0 1

( ) ( ) ( ) ( ), [ , ],
( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

y x f x y x g x x a b
y a y b

y a y b

y a y b

y a y b

α α

γ γ

δ δ

υ υ

⎫+ = ∈
⎪

= = ⎪
⎪= = ⎬
⎪= = ⎪
⎪= = ⎭

   (16) 

where , ,i i iα γ δ  and , 0,1i iυ =  are finite real 
constants and the functions f(x) and g(x) are 
continuous on [a,b]. 
In the present paper, Ghazala Akram et al. have 
used Nonic spline for the numerical solutions of 
the eighth order linear special case boundary value 
problem given by equation (16). The end 
conditions are derived for the definition of spline. 
The algorithm developed not only approximates the 
solutions, but their higher order derivatives as 
well. The method presented in this paper has also 
been proved to be second order convergent. Two 
examples compared with those considered by 
Siddiqi et al. [25] and Inc et al. [27], show that the 
method developed in this paper is more efficient. 
Collocation method is developed for the 
approximate solution of eighth order linear special 
case BVP, using nonic spline. The method is also 
proved to be second order convergent. 
Tenth Degree Spline Technique to Solve Boundary 
Value Problems: 
A Tenth degree spline function SΔ(x), interpolating 
to a function u(x) on [a,b] defined as: 
(i) In each interval [xj-1, xj]=1,2,….,N, SΔ(x) is a 

polynomial of degree at most ten. 
(ii) The first ninth derivatives of SΔ(x) are 

continuous on [a,b]. 
(iii) SΔ(xi)=u(xi), i=0(1)N+1. 
Considering the paper by S. S. Siddiqi et al. [28] 
having the system of tenth-order boundary value 
problem of the type 

( )

( )
0 2

( ) ( )
4 6

( ) ( )
8 0 2

( ) ( )
4 6

( )
8

( ) ( ) ( ), ,
( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) , ( ) ,

( ) , ( ) ,

( ) ,

x

ii

iv vi

viii ii

iv vi

viii

y x x y x a x b
y a A y a A

y a A y a A

y a A y b B y b B

y b B y b B

y b B

φ ψ ⎫+ = − ∞ < ≤ ≤ < ∞
⎪

= = ⎪
⎪= = ⎪
⎬

= = = ⎪
⎪= = ⎪
⎪= ⎭

  (17) 

where y=y(x), Ф(x) and Ψ(x) are continuous 
function defined in the interval x∈ [a,b] and Ai and 
Bi, i=0,2,4,6,8 are finite real constants. 
In the present paper, linear, tenth-order boundary-
value problems (special case) are solved, using 
polynomial splines of degree ten. The spline 
function values at midknots of the interpolation 
interval and the corresponding values of the even-
order derivatives are related through consistency 
relations. The algorithm developed approximates 
the solutions and their higher-order derivatives, of 
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differential equations. Four numerical illustrations 
are given to show the practical usefulness of the 
algorithm developed. It is observed that this 
algorithm is second-order convergent. 
Eleventh Degree Spline Technique to Solve 
Boundary Value Problems: 
An Eleventh degree spline function SΔ(x), 
interpolating to a function u(x) on [a,b] defined as: 
(i) In each interval [xj-1, xj]=1,2,….,N, SΔ(x) is a 

polynomial of degree at most eleven. 
(ii) The first tenth derivatives of SΔ(x) are 

continuous on [a,b]. 
(iii) SΔ(xi)=u(xi), i=0(1)N+1. 
In a nonpolynomial Eleventh degree spline we 
introduce a parameter k. The arbitrary constants 
are being chosen to satisfy certain smoothness 
conditions at the joints. This ‘spline’ belongs to the 
class C10[a,b]  and reduces into polynomial splines 
as k→0. 
Considering the paper [29] having the system of 
tenth-order boundary value problem of the type 

(10)

0 1
(1) (1)

0 1
(2) (2)

0 1
(3) (2)

0 1
(4) (4)

0 1

( ) ( ) ( ) ( ), [ , ],
( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

y x f x y x g x x a b
y a y b

y a y b

y a y b

y a y b

y a y b

α α

γ γ

δ δ

υ υ

ζ ζ

⎫+ = ∈
⎪= = ⎪
⎪= = ⎪
⎬

= = ⎪
⎪= = ⎪
⎪= = ⎭

   (18) 

where , , ,i i i iα γ δ υ and , 0,1i iζ =  are finite real 
constants and the functions f(x) and g(x) are 
continuous on [a,b]. 
In this paper, S. S. Siddiqi et al. have obtained 
numerical solutions of the tenth-order linear 
special case boundary value problems using 
eleventh degree spline. The end conditions 
consistent with the BVP are also derived. Siddiqi 
and Twizell [28] presented the solutions of tenth-
order boundary value problems using tenth degree 
spline, where some unexpected results for the 
solution and higher order derivatives were obtained 
near the boundaries of the interval. No such 
unexpected situation is observed in this method, 
near the boundaries of the interval and the results 
are better in the whole interval. The algorithm 
developed approximates the solutions, and their 
higher order derivatives. Numerical illustrations 
are tabulated to compare the errors with those 
considered by Siddiqi and Twizell [27] and the 
method is observed to be better. 

Twelfth Degree Spline Technique to Solve 
Boundary Value Problems: 
A twelfth degree spline function SΔ(x), 
interpolating to a function u(x) on [a,b] defined as: 
(i) In each interval [xj-1, xj]=1,2,….,N, SΔ(x) is a 

polynomial of degree at most twelve. 
(ii) The first eleven derivatives of SΔ(x) are 

continuous on [a,b]. 
(iii) SΔ(xi)=u(xi), i=0(1)N+1. 
Considering the paper [30] having the system of 
twelfth-order boundary value problem of the type 

 
( )

(2 ) (2 )
2 , 2 ,

( ) ( ),
( ) ( ) 0,1, 2,....,5

xii

k k
k k

y x y x a x b
y a A y b B k

φ ψ+ = −∞ < ≤ ≤ < ∞

= = =  
(19)           

where y=y(x), Ф(x) and Ψ(x) are continuous 
function defined in the interval x∈ [a,b] and Ai and 
Bi, i=0,2,4,6,8,10  are finite real constants.  
In the present paper, S. S. Siddiqi et al. have solved 
linear twelfth-order boundary-value problems 
(special case), using polynomial splines of degree 
twelve. The spline function values at midknots of 
the interpolation interval and the corresponding 
values of the even-order derivatives are related 
through consistency relations. The algorithm 
developed approximates the solutions and their 
higher-order derivatives, of differential equations. 
Two numerical illustrations are given to show the 
practical usefulness of the algorithm developed. It 
is observed that this algorithm is second-order 
convergent. 
Thirteenth Degree Spline Technique to Solve 
Boundary Value Problems: 
A thirteen degree spline function SΔ(x), 
interpolating to a function u(x) on [a,b] defined as: 
(i) In each interval [xj-1, xj]=1,2,….,N, SΔ(x) is a 

polynomial of degree at most thirteen. 
(ii) The first twelve derivatives of SΔ(x) are 

continuous on [a,b]. 
(iii) SΔ(x)=u(x), i=0(1)N+1. 
In a nonpolynomial thirteenth degree spline we 
introduce a parameter k. The arbitrary constants 
are being chosen to satisfy certain smoothness 
conditions at the joints. This ‘spline’ belongs to the 
class C12[a,b]  and reduces into polynomial splines 
as k→0. 
Considering the paper by S. S. Siddiqi et al. [31] 
having the system of twelfth-order boundary value 
problem of the type 
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     (20) 

where , , , ,i i i i iα γ δ υ ζ and , 0,1i iω =  are finite real 
constants and the functions f(x) and g(x) are 
continuous on [a,b]. 
In this paper numerical solutions of the twelfth 
order linear special case boundary value problems 
are obtained using thirteen degree spline. The end 
conditions are derived for the definition of spline. 
Siddiqi and Twizell [30] presented the solutions of 
twelfth order boundary value problems using 12th 
degree spline, where some unexpected results for 
the solution and its derivatives were obtained, near 
the boundaries of the interval. No such situation is 
observed in this method. The algorithm developed, 
approximates not only the solution but its higher 
order derivatives as well. Numerical illustrations 
are tabulated to demonstrate the practical 
usefulness of the method. 
This paper is organized in three sections. Using 
derivative continuities at knots, the consistency 
relations between the values of spline and its 
higher order derivatives at knots are determined in 
first section. In second section the end conditions 
are derived to complete the definition of spline 
which completes the required spline solution 
approximating the solution of the BVP (20). In 
third section, two examples are considered for the 
implementation of the method developed. In this 
paper the method developed not only approximates 
the solution of BVP, but its higher order 
derivatives as well. The method developed, provides 
encouraging results. The possibility of finding the 
solutions of further higher order BVPs can also be 
explored in future. 
CONCLUSION 
This paper is devoted to the evolution, progress, 
types and spline solutions of differential equations. 
There is now considerable evidence that in many 
circumstances a spline function is a more adaptable 
approximating function than a polynomial 
involving a comparable number of parameters. 
Recent trends in computational mathematics, 

mathematical physics and mechanics are toward the 
wide use of spline functions to solve such problems. 
The main advantages of application of spline 
function are its stability (the local behaviour of a 
spline at a point does not affect its overall 
behaviour) and calculation simplicity In solving 
problems arising in astrophysics, problem of 
heating of infinite horizontal layer of fluid, 
eigenvalue problems arising in thermal instability, 
obstacle, unilateral, moving and free boundary-
value problems, problems of the deflection of plates 
and in a number of other problems of scientific 
applications, spline functions are not only more 
accurate but also we have a variety of choices to use 
quadratic, cubic, quartic, quintic, sextic, septic, 
octic, nonic or higher splines to solve them. 
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