

ACTA TEHNICA CORVINIENSIS — Bulletin of Engineering **Tome VIII** [2015] Fascicule 1 [January – March] ISSN: 2067 – 3809

¹ Mohamed ZELLAGUI, ² Abdelaziz CHAGHI

APPLICATION KHA FOR OPTIMAL COORDINATION OF DIRECTIONAL OVERCURRENT RELAYS IN THE PRESENCE MULTI GCSC

¹⁻²LSPIE Laboratory, Faculty of Technology, Department of Electrical Engineering, University of Batna, ALGERIA

Abstract: Optimal coordination of direction overcurrent relays in the power systems in the presence of GTO Controlled Series Capacitor (GCSC) installed on meshed power system is studied in this paper. The coordination problem is formulated as a non-linear constrained mono-objective optimization problem. The objective function of this optimization problem is the minimization of the operation time of the associated relays in the systems, and the decision variables are: the time dial setting and the pickup current setting of each overcurrent relay. To solve this complex non linear optimization problem, a variant of evolutionary optimization algorithms named Krill Herd Algorithm (KHA) is used. The proposed algorithm is validated on IEEE 14bus transmission network test system considering various scenarios. The obtained results show a high efficiency of the proposed method to solve such complex optimization problem, in such a way the relays coordination is guaranteed for all simulation scenarios with minimum operating time for each relays. The results of objective function are compared to other optimization algorithms.

Keywords: Meshed Power System, GTO Controlled Series Capacitor, Overcurrent Relay, Coordination Time, Krill Herd Algorithm

INTRODUCTION

The most important part in designing the protection needs to consider such as the type of relays, the size of circuit breaker and fuse, the type and size of current transformer, the coordination of relays, and them system needs to be coordinated with the relays protecting the component to maintain the stability of the system. Then to maintain adjacent equipment [3], the overall protection coordination is thus the stability each relay in the power network must setting in proper technique in term of current and time operation. During the operation pickup current and dial time settings. of modern interconnected power systems, abnormal conditions can frequently occur. Such conditions cause interruption of the supply, and may damage the equipments connected to the system, arising the importance of designing a reliable protective system. In order to achieve such reliability, a back-up protective scheme is provided to act restrictions. As a consequence, some transmission lines are heavily as a second line of defense in case of any failure in the primary protection. In other words, it should operate after a certain time delay known as Coordination Tine Interval (CTI), giving the chance for the many benefits to the network and have been mainly used for solving primary protection to operate.

known protective relay setting coordination, that consists of the optimum protection coordination (optimum solution for relay selection of a suitable setting of each relay such that their settings) without GCSC on power system using different optimization fundamental protective function is met under the desirable qualities techniques, including Random Search (RS) technique is reported in of protective relaying, namely sensitivity, selectivity, reliability, and [6], speed [1]. Overcurrent relaying, which is simple and economic, is Differential Evolution Algorithm (DEA) in [8], Modified Differential commonly used for providing primary protection and as backup Evolution Algorithm (MDEA) in [9], and Self-Adaptive Differential protection on power systems [2]. To reduce the power outages, mal- Evolutionary (SADE) algorithm in [10], application Particle Swarm operation of the backup relays should be avoided, and therefore, Optimization (PSO) in [11], and Modified Particle Swarm Optimizer in Overcurrent relay coordination in power transmission and distribution [12, 13], and Evolutionary Particle Swarm Optimization (EPSO)

networks is a major concern of protection engineer. A relay must get System protection is an important part in the power network systems. sufficient chance to protect the zone under its primary protection. Only if the primary protection does not clear the fault, the back-up protection should initiate tripping. Each protection relay in the power very complicated. Overcurrent relay have two types of settings:

> Recently, it is noticeable that the power demand has been increasing substantially worldwide. On the other hand, the expansion of power generation and transmission facilities and equipment has been severely limited due to limited resources and environmental loaded and the system stability becomes a power transfer-limiting factor. Flexible AC Transmission Current (FACTS) controllers offer various power system steady state control problems [4, 5].

The fore mentioned situation leads to the formulation of the well- In recent years, many research efforts have been made to achieve Evolutionary Algorithms (EA) is presented in [7] while

Bulletin of Engineering

Algorithm in [14], Box-Muller Harmony Search (BMHS) in [15], Zeroone Integer Programming (ZOIP) Approach in [16], Seeker Algorithm (SA) is presented in [17], and Teaching Learning-Based Optimization (TLBO) in [18].

This paper presents the solution of the coordination problem of IDMT directional overcurrent relays on meshed power system using KHA approach. The problem is formulated as a non linear constrained mono-objective optimization problem. Our goal behind this optimization is to find an optimal setting of Time Dial Setting (TDS) and Pickup current (I_P) of each relay that minimizes the operating time (T) of overall relays. The new idea presented in this paper, is In the presence three phase fault, the fault current (I_F) is defined by taking into account the variation of the effective impedance of the [22]: line caused by the action of GCSC devices of the transmissions line. Two simulation scenarios with and without multi GCSCs are considered in this paper.

APPARENT RECTANCE INJECTED BY GCSC

The GCSC presented in thefigure 1.a is the first that appearsin the family of seriescompensators. It consists of acapacitance (C) connected in serieswith the transmission line and controlled by avalve-type GTOthyristorsmounted in anti-paralleland controlled byafiring angle (y) variedbetween 0° and 180° [19-22].

Thiscompensator is installed in the transmission line AB between busbars A (source) and B (load) and modeled as a variablecapacitive reactance(X_{GCC}). From figure 1.b, this capacitive reactance is defined by the equation [21, 22]:

$$X_{GCSC}(\gamma) = X_{C.Max} \left[1 - \frac{2}{\pi} \gamma - \frac{1}{\pi} \sin(2\pi) \right]$$
(1)

where,

$$X_{C.Max} = \frac{1}{C_{GCSC}}.\omega$$

The conduction angle (β) which varies between 0 to 90°, is defined by next relation:

$$\beta = \pi - 2\gamma = 2\left(\frac{\pi}{2} - \gamma\right)(3)$$

From equation (3), the equation (2) becomes:

Fascicule 1 [January – March] Tome VIII [2015]

$$X_{GCSC}(\beta) = X_{C.Max} \left[1 - \left(\frac{\pi - \beta}{\pi}\right) - \frac{1}{\pi} \sin\left(\pi(\pi - \beta)\right) \right]$$
(4)

The relation of injected voltage is calculated by flowing equation:

$$V_{GCSC}(\beta) = V_{Max} \left[1 - \left(\frac{\pi - \beta}{\pi}\right) - \frac{1}{\pi} \sin(\pi(\pi - \beta)) \right]$$
(5)

Where, V_{Max}is maximum voltage injected and controlled by GCSC. The total transmission line (Z_{AB-GCSC}) impedance with GCSC inserted on midline is given by:

$$Z_{AB-GCSC} = R_{AB} + j \left[X_{AB} - X_{GCSC}(\beta) \right]$$
(6)

$$I_F = \frac{3.(V_A + V_{GCSC})}{Z_{AB.1} + X_{GCSC.1}}$$
(7)

Where, Z_{AB.1} and X_{GCSC.1} is positive component of line impedance compensated and GCSC respectively. From equation (7), the fault current is only related to parameters of transmission line and parameters of GCSC installed (V_{GCSC} and X_{GCSC}).

PROBLEM FORMULATION AND CONSTRAINTS

The coordination of directional overcurrent relays in a multi-loop system is formulated as an optimization problem. The coordination problem, including objective function and constraints, should satisfy three requirements.

Objective Function

The aim of this function (f) is to minimize the total operating time of all overcurrent protection relays in the system with respect to the coordination time constraint between the backup and primary relays.

$$f = Min\left\{\sum_{i=1}^{N} T_i\right\} \tag{8}$$

Where, T_i represents the operating time of the t^h relay, N represents the number of relays in the power system. For each protective relay the operating time T is defined by [9-11]:

$$T_{i} = TDS \times \frac{\alpha}{\left(\frac{I_{M}}{I_{P}}\right)^{\beta} + \gamma}$$
(9)

Where, T is relay operating time (sec), TDS is time dial setting (sec), I_{M} is the fault current measured by relay (A), I_P is pickup current (A). The constant α , β , and γ depend on the characteristic curve for IDMT *directional overcurrent relay. The current I_M is defined by:*

$$I_M = \frac{I_F}{K_{CT}} \tag{10}$$

where, I_F is the fault current, and K_{CT} is ratio of the current transformer.

Constraints

The coordination problem has two types of constraints, including the constraints of the relay characteristic and coordination constraints. Relay constraints include limits of relay operating time and settings. Coordination constraints are related to the coordination of primary and backup relays.

(2)

Bulletin of Engineering

The operating time of a relay is a function of the pickup current population; f_{i} , f_{i} are the fitness value of the l^h and l^h individuals setting and the fault current seen by the relay. Based on the type of respectively. N_s is the number of krill individuals surrounding the relay, the operating time is determined via standard characteristic particular krill; i, i_{max} are the current iteration and the maximum curves or analytic formula. The bounds on operating time are iteration number. expressed by:

$$T_i^{\min} \le T_i \le T_i^{\max} \tag{11}$$

Where, T_i^{\min} and T_i^{\max} are the minimum and maximum operating times of the *t*^hovercurrent relay.

During the optimization procedure, the coordination between the primary and the backup relays must be verified. In this paper, the chronometric coordination between the primary and the backup relays is used as follows equation:

$$T_{backup} - T_{primary} \ge CTI \tag{12}$$

Where, T_{backup} and T_{primary} are the operating time of the backup relay and the primary relay respectively, CTI is the coordination time interval.

The time dial setting (TDS) adjusts the time delay before the relay operates when the fault current reaches a value equal to, or greater than, the pickup current (I_P) setting [6-12].

$$TDS_{i}^{\min} \leq TDS_{i} \leq TDS_{i}^{\max} \tag{13}$$

$$I_{P_i}^{\min} \le I_{P_i} \le I_{P_i}^{\max} \tag{14}$$

where, TDS_i^{\min} and TDS_i^{\max} are the minimum and the maximum *limits of TDS for the t^h relay.* $I_{P_i}^{\min}$ and $I_{P_i}^{\max}$ are the minimum and the *maximum limits of Ip for the it relay.*

KRILL HERD ALGORITHM (KHA)

KHA is a recently developed heuristic algorithm based on the herding behavior of krill individuals. It has been first proposed by Gandomi In KHA, the krill individuals fly around in the multi-dimensional space and Alavi in 2012 [22-24]. It is a population based method consisting and each krill adjusts its position based on induction motion, foraging of a large number of krill in which each krill moves through a multidimensional search space to look for food. In this algorithm, the be expressed as [24]: positions of krill individuals are considered as different design variables and the distance of the food from the krill individual is analogous to the fitness value of the objective function. In KHA, the individual krill alters its position and moves to the better positions. Induction

In this process, the velocity of each krill is influenced by the movement of other krill individuals of the multi-dimensional search space and its velocity is dynamically adjusted by the local, target and *repulsive vector. The velocity of the t^h krill at the mth movements may* be formulated as follows [22]:

and,

$$V_i^m = \alpha_i V_i^{\max} + \omega_n V_i^{m-1} \tag{15}$$

$$\alpha_{i} = \sum_{j=1}^{N_{s}} \left[\frac{f_{i} - f_{j}}{f_{w} - f_{b}} \times \frac{Z_{i} - Z_{j}}{|Z_{i} - Z_{j}| + rand(0,1)} \right] + 2 \left[rand(0,1) + \frac{i}{i_{\max}} \right] f_{i}^{best} X_{i}^{best}$$
(16)

where, V_i^{max} is the maximum induced motion: V_i^m , V_i^{m-1} are the In this process [24], a scalar number F_R scales the difference of induced motion of the *i*thkrill at the *m*thand (m-1)thmovement; ω_n is the inertia weight of the motion induced: f_w and f_b are the worst and the best position respectively, among all krill individuals, of the

Fascicule 1 [January – March] Tome VIII [2015]

A sensing distance (SD_i) parameter is used to identify the neighboring members of each krill individual. The sensing distance may be represented by [23]:

$$SD_i = \frac{1}{5n_p} \sum_{k=1}^{n_p} |Z_i - Z_k|$$
 (17)

where, n_p is the population size, Z_i and Z_k are the position of the i^h and kth krill respectively.

Foraging Action

The foraging velocity of the *i*th krill at the *m*th movement may be expressed by [22]:

$$V_{f_{i}}^{m} = 0.02 \left[2 \left(1 - \frac{i}{i_{\max}} \right) f_{i} \frac{\sum_{k=1}^{N_{s}} \frac{Z_{k}}{f_{k}}}{\sum_{k=1}^{N_{s}} \frac{1}{f_{j}}} + f_{i}^{best} X_{i}^{best} \right] + \omega_{x} V_{f_{i}}^{m-1}$$
(18)

where, ω_x is the inertia weight of the foraging motion, V_n^{m-1} , V_n^m , are the foraging motion of the *i*^hkrill at the (*m* - 1)th and *m* movement.

Random Diffusion

The diffusion speed of krill individuals may be expressed as follows [22]:

$$V_{D_i}^m = \mu V_D^{\max} \tag{19}$$

where, V_{D}^{max} is the maximum diffusion speed; μ is a directional vector uniformly.

Position Update

motion and diffusion motion. The updated position of the *t*^hkrill may

$$Z_{i}^{m+1} = Z_{i}^{m} + \left(V_{i}^{m} + V_{fi}^{m} + V_{Di}^{m}\right) Pt \sum_{j=1}^{N_{d}} \left(u_{j} - l_{j}\right)$$
(20)

where, N_d is the number of control variables u_i , l_i are the maximum and minimum limits of the f^h control variable; P_t is the position constant factor.

Crossover

Depending upon the crossover probability, each krill individual interacts with others to update its position. The *t*^h components of the *t*^{*h}</sup><i>krill may be updated by* [22-24]:</sup>

$$Z_{i,j} = \begin{cases} Z_{k,j} & \text{if, } rand \le C_{R_i} \\ Z_{i,j} & \text{if, } rand > C_{R_i} \end{cases} \text{ where, } k = 1, 2, \dots n_p; \ k \ne 1$$
 (21)

where, *C_{Ri}is the crossover probability and is given by* [22]:

$$C_{R_i} = 0.2 f_i^{best} \tag{22}$$

Mutation

tworandomly selected vectors $Z_{m,i}$ and $Z_{n,i}$ and the scaled difference is added to the best vector $Z_{best,i}$ whence the mutant vectors $Z_{i,i}^{m}$ is obtained.

- Bulletin of Engineering

$$Z_{i,j} = Z_{best,j} + F_R (Z_{m,j} - Z_{n,j})$$

Using mutation probability (M_R) the modified value, $Z_{i,j}^{mod}$ is selected from $Z_{i,j}^m$ and $Z_{i,j}$ and it may mathematically expressed as [22, 24]:

$$Z_{i,j}^{\text{mod}} = \begin{cases} Z_{i,j}^{m} & \text{if } rand \le M_{R} \\ Z_{i,j} & \text{if } rand > M_{R} \end{cases}$$
(24)

The proposed optimization algorithm includes steps below:

Step no. 1: Structure definition of data, the limit of scope and parameters,

Step no. 2: Definition of initial population,

Step no. 3: Calculation of the propriety of each Krill according to its location in the search environment,

Step no. 4: Calculation of the movement of each Krill,

Step no. 5: Induced movement of other Krill,

Step no. 6: Movement towards food,

Step no. 7: Physical diffusion based on chaotic portrait,

Step no. 8: Implementation of genetic operators,

Step no. 9: The update process of each krill in the search environment, Step no. 10: Repetition of step no. 3 to 6 up to the desired accuracy, Step no. 11: End.

CASE STUDY AND RESULTS

The impact of GCSC on directional relays coordination is performed on the following two scenarios: without and with multi GCSC installed at IEEE 14 bus transmission power systems. As we mentioned above, the relays coordination problem is formulated as constrained monoobjective problem and solved using the KHA optimization algorithm considering 82 decision variables (42 variables represent the I_P and 42 variables represent the TDS).

Figure 2. IEEE 14-bus power system with multi GCSC Figure 2, represents the case study of a network fed by 02 generators and with 14 buses, 20 transmission lines. The power system consists

Fascicule 1 [January – March] _____Tome VIII [2015]

a) of 42 directional overcurrent relays. The power system study is compensated with five GCSCs located at middle of the transmission lines (1-5, 3-4, 4-5, 9-14, and 13-14), where conduction angle (β) varied between 5°, 45°, and 90° for all installed GCSCs on power 4) system.

Impact of GCSC on CTI

(23)

 Table 1 presents, the CTI values of the overcurrent relays without and with multi GCSC on three compensation degree.

Table 1. Impact of main Gese on en value							
Primary	Backup	Without	With GCSC				
relay	relay	GCSC	$\beta = 5^{\circ}$	$\beta = 45^{\circ}$	$\beta = 90^{\circ}$		
5	6	0.3400	-0.1124	-1.2366	-0.2507		
11	12	0.3600	-0.1462	-1.6086	-0.7261		
15	16	0.3200	-0.1123	-1.2352	-0.2504		
33	34	0.3893	-0.0778	-0.8553	-0.4734		
35	36	0.3321	-0.1061	-1.1666	-0.2365		

Table 1. Impact of multi GCSC on CTI value

From this table, it is clear that all relays are coordinated in the case without multi GCSC (superior reference value 0.3 sec), but among of them are not coordinated in the presence multi GCSC for all angle β (CTI value written in bold). Thus, we can conclude that GCSC causes a loss of coordination between the relays protection line. In this situation, we must compute the new settings of the relays to ensure the coordination.

a). Without GCSC, b). With GCSC.

- Bulletin of Engineering

Optimal Settings and Coordination

The optimization constraints for case all study in absence or presence multi GCSCs are:

- \checkmark CT/=0.3 sec,
- ✓ $50 \le I_{Pi} \le 1700$ (A),
- ✓ $0.02 \le TDS_i \le 0.30$ (sec),
- ✓ $0.05 \le T_i \le 1.50$ (sec),
- ✓ *Type of curve: very inverse.*

The KHA parameters are:

- $\checkmark \quad V_i^{max} = 0.01,$
- $\checkmark V_D^{max} = 0.15,$
- ✓ $P_t = 0.20$,
- $\checkmark \quad \omega_n = 0.90,$
- $\checkmark \quad \omega_{x} = 0.90,$
- ✓ G_{max}= 180.

The convergence characteristics of the KHA without and with multi GCSCs are depicted in Figures 3.a and 3.b respectively.

From Figure 4.a, we can see that the optimization algorithm proposed is convergence within 120 iterations, and the value of objective function is 14.5384 sec. From Figure 4.b, the value of objective function in the presence multi GCSC is 16.4321 sec, 17.0347, and 19.3246 with conduction angle β equal 90°, 45° and 5 ° respectively. The optimal settings relay (I_P and TDS) for all cases are represented in Tables 2 and 3.

Table 2 : Optimal re	avs setting	s without	GCSC
-----------------------------	-------------	-----------	------

Relay No.	Ι _Ρ (A)	TDS (sec)	Relay No.	І _Р (А)	TDS (sec)
1	876	0.031	22	526	0.180
2	368	0.042	23	175	0.196
3	368	0.046	24	701	0.226
4	876	0.031	25	421	0.127
5	548	0.072	26	1314	0.143
6	245	0.035	27	245	0.021
7	245	0.053	28	350	0.152
8	329	0.121	29	175	0.044
9	350	0.113	30	788	0.086
10	140	<i>0.099</i>	31	131	0.170
11	350	0.072	32	70	0.046
12	105	0.227	33	701	0.129
13	245	0.064	34	175	0.226
13	548	0.081	35	280	0.131
15	438	<i>0.129</i>	36	526	0.168
16	245	0.168	37	131	0.158
17	<i>394</i>	0.128	38	280	0.136
18	210	0.022	39	105	0.060
19	701	0.193	40	767	0.121
20	280	0.175	41	876	0.162
21	350	0.201	42	280	0.105

Fascicule 1 [January – March] _____ Tome VIII [2015]

Table 3: Optimal relays settings with multi GCSC a). $\beta = 5^{\circ}$, b). $\beta = 45^{\circ}$, c). $\beta = 90^{\circ}$.

<i>(a)</i>						
Relay No.	І _Р (А)	TDS (sec)	Relay No.	І _Р (А)	TDS (sec)	
1	1011	0.036	22	607	0.208	
2	425	0.048	23	202	0.227	
3	425	0.048	24	809	0.260	
4	1011	0.036	25	485	0.147	
5	632	0.083	26	1517	0.165	
6	283	0.041	27	283	0.022	
7	283	0.061	28	404	0.175	
8	379	0.140	29	202	0.051	
9	404	0.131	30	910	0.100	
10	162	0.114	31	152	0.196	
11	404	0.083	32	81	0.053	
12	121	0.262	33	809	0.148	
13	283	0.074	34	202	0.261	
13	632	0.094	35	324	0.151	
15	506	0.149	36	607	<i>0.193</i>	
16	283	0.194	37	152	0.182	
17	455	0.148	38	324	0.157	
18	243	0.025	39	121	0.069	
19	809	0.223	40	885	0.140	
20	324	0.202	41	1011	0.187	
21	404	0.232	42	324	0.121	

(b)

Bulletin of Engineering

(L)						
Relay No.	Ір (А)	TDS (sec)	Relay No.	Ір (А)	TDS (sec)	
1	<i>859</i>	0.030	22	515	0.177	
2	361	0.041	23	172	<i>0.192</i>	
3	361	0.044	24	687	0.221	
4	<i>859</i>	0.030	25	412	0.125	
5	537	0.071	26	1288	0.140	
6	240	0.035	27	240	0.020	
7	240	0.052	28	343	<i>0.149</i>	
8	322	<i>0.119</i>	29	172	0.043	
9	343	0.111	30	773	0.085	
10	137	0.097	31	<i>129</i>	0.166	
11	343	0.070	32	69	0.045	
12	103	0.223	33	687	0.126	
13	240	0.063	34	172	0.222	
13	537	0.080	35	275	0.128	
15	429	0.126	36	515	0.164	
16	240	0.164	37	<i>129</i>	0.155	
17	386	0.125	38	275	0.134	
18	206	0.023	39	103	0.058	
19	687	0.189	40	751	0.119	
20	275	0.171	41	859	0.159	
21	343	0.197	42	275	0.103	

The new optimal value for coordination between primary and backup relays in the presence multi GCSC is presented in Table 4. After this table that all directional overcurrent relays are well coordinated (superior reference value equal 0.3 sec) after optimization using KHA [2] A.Y. Abdelaziz, H.E.A. Talaat, A.I. Nosseir, and A.A. Hajjar, "An optimization algorithm.

Primary	Backup	Without	With GCSC		
relay	relay	GCSC	$\beta = 5^{\circ}$	$\beta = 45^{\circ}$	$\beta = 90^{\circ}$
5	6	0.3212	0.3171	0.3321	0.3324
11	12	0.3354	0.4211	0.3034	0.3097
15	16	0.3137	0.3156	0.3166	0.3135
33	34	0.3523	0.3044	0.4371	0.4278
35	36	0.3455	0.3577	0.3105	0.3044

Table 4. CTI value in the presence multi GCSC after optimization

Comparison with Published Results

For comparison purpose Table 5, presents a comparison of the best obtained value of the objective function (OF) for scenario without multi GCSC with other published results.

Table 5: Comparison of published results

	MPSO [25]	LP [26]	NLP [26]	NM [26]	KHA
OF (sec)	61.7200	30.8451	<i>18.0099</i>	<i>16.5948</i>	14.5384

From the results of Table 3, it can be also seen that the proposed optimization algorithm KHA has given better performance and provides the best solution compared with other results.

Fascicule 1 [January – March] **Tome VIII** [2015]

CONCLUSIONS

In this paper we present an optimal relays coordination in the presence of multi GCSCs in the transmission power system for different conduction angle. We propose the formulation of the relays coordination problem as three scenarios. The obtained results show that the multi GCSC has a great impact on the setting and the coordination of the numerical directional overcurrent protections. Furthermore, the proposed optimization algorithm KHA show a high efficiency to solve such complex optimization problem, in such a way the coordination of the relays is guaranteed for all simulation scenarios.

The results showed that the proposed algorithms are able to find superior I_P and TDS and thus minimum operating time of the directional overcurrent relays and minimum CTI. The effectiveness of KHA can be observed from the results in terms of objective function values, which are better in comparison to other optimization algorithms used in the literature.

The continuity of this work will be the coordination of the overcurrent relays in the presence of FACTS devices and renewable energy considering several conflicting objective functions and various power system topologies (transmission and distribution) using new optimization algorithms, and hybrid optimization algorithms.

REFERENCES

- [1] P.M. Anderson, "Power System Protection", published by McGraw-Hill, New York, USA, 1999.
- Adaptive Protection Scheme for Optimal Coordination of Overcurrent Relays", Electrical Power System Research, Vol. 61, No. 1, pp. 1-9, 2002.
- [3] H. Zeienldin, E.F. El-Saadany, and M.A. Salama, "A Novel Problem Formulation for Directional Overcurrent Relay Coordination", IEEE Large Engineering Systems Conference on Power Engineering (LESCOPE), Halifax, Nova Scotia, Canada, 28-30 July, 2004.
- [4] K.K. Sen, and M.L. Sen, "Introduction to FACTS Controllers: Theory, Modeling and Applications", John Wiley Sons, and IEEE Press, USA, 2009.
- [5] X.P. Zhang, C. Rehtanz, and B. Pal, "Flexible AC Transmission Systems: Modelling and Control", Springer Publishers, Heidelberg - Germany, 2006.
- [6] D. Birla, R. Prakash, H. Om, K. Deep, and M. Thakur, "Application of Random Search Technique in Directional Overcurrent Relay Coordination", International Journal of Emerging Electrical Power Systems, Vol. 7, No. 1, pp. 1-14, 2006.
- [7] J.A. Sueiro, E. Diaz-Dorado, E. Míguez, and J. Cidrás, "Coordination of Directional Overcurrent Relay using Evolutionary Algorithm and Linear Programming", International Journal of Electrical Power and Energy Systems, Vol. 42, pp. 299-305, 2012.

Bulletin of Engineering

- [8] R. Thangaraj, T.R. Chelliah, and M.Pant, "Overcurrent Relay [20] M. Zellagui, and A. Chaghi, "A Comparative Study of Impact Coordination by Differential Evolution Algorithm", IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), India, December 16-19, 2012.
- Overcurrent Relays using Modified Differential Evolution Algorithms", Engineering Applications of Artificial Intelligence, Vol. 23, No. 5, pp. 820-829, 2010.
- Coordination of Overcurrent Relays Using SADE Algorithm", 16th Conference on Electrical Power Distribution Networks (EPDC), Bandar Abbas, Iran, 19-20 April, 2011.
- [11] M.R. Asadi, and S.M. Kouhsari, "Optimal Overcurrent Relays Coordination using Particle Swarm Optimization Algorithm", IEEE / PES Power Systems Conference and Exposition (PSCE), USA, 15- [24] B. Mandal, P.K. Roy, and S. Mandal, "Economic Load Dispatch 18 March, 2009.
- [12] H. Zeineldin, E. El-Saadany, and M. Salama, "Optimal Swarm Optimization", Electrical Power Systems Research, Vol. 76, No. 11, pp. 988-995, 2006.
- [13] M.M. Mansour, S.F. Mekhamer, and N.E.S. El-Kharbawe, "A Modified Particle Swarm Optimizer for the Coordination of [26] M. Ezzeddine, R. Kaczmarek, and M.U. Iftikhar, "Coordination of Directional Overcurrent Relays", IEEE Transactions on Power Delivery, Vol. 22, No. 3, pp. 1400-1410, 2007.
- [14] H. Leite, J. Barros, and V. Miranda, "The Evolutionary Algorithm EPSO to Coordinate Directional Overcurrent Relays", 10th IET International Conference on Developments in Power System Protection (DPSP), Manchester, UK, March 29 - April 1, 2010.
- [15] A. Fetanat, G. Shafipour, and F. Ghanatir, "Box-Muller Harmony Search Algorithm for Optimal Coordination of Directional Overcurrent Relays in Power System", Scientific Research and Essays, Vol. 6, No. 19, pp. 4079-4090, 2011.
- [16] J. Moirangthem, S.S. Dash, and R. Ramaswami, "Zero-one Integer Programming Approach to Determine the Minimum Break Point Set in Multi-loop and Parallel Networks", Journal of Electrical Engineering & Technology (IJET), Vol. 7, No. 2, pp. 151-156, 2012.
- [17] T. Amraee, "Coordination of Directional Overcurrent Relays Using Seeker Algorithm", IEEE Transactions on Power Delivery, Vol. 27, No. 3, pp. 1415-1422, 2012.
- [18] M. Singh, B.K. Panigrahi, and A.R. Abhyankar, "Optimal Coordination of Directional Overcurrent Relays using Teaching Learning-Based Optimization (TLBO) Algorithm", International Journal of Electrical Power and Energy Systems, Vol. 50, pp. 33-41, 2013.
- [19] L.F.W. De Sow, E.H. Watanabe, and M.Aredes, "GTO Controlled Series Capacitors: Multi-module and Multi-pulse Arrangements", IEEE Transaction on Power Delivery, Vol. 15, No. 2. pp. 725-731, 2000.

Fascicule 1 [January – March] Tome VIII [2015]

- Series FACTS Devices on Distance Relay Setting in 400 kV Transmission Line", Journal of Electrical and Electronics Engineering (JEEE), Vol. 5, No. 2, pp. 111-116, 2012.
- [9] R. Thangaraj, M. Pant, and K. Deep, "Optimal Coordination of [21] M. Zellagui, R. Benabid, A. Chaghi, and M. Boudour, "Impact of GCSC on IDMT Directional Overcurrent Relay in the Presence Phase to Earth Fault", Serbian Journal of Electrical Engineering (SJEE), Vol. 10, No. 3, pp. 381-398, 2013.
- [10] M. Mohseni, A. Afroomand, and F. Mohsenipour, "Optimum [22] A.H. Gandomi, and A.H. Alavi, "Krill Herd: New Bio-Inspired Optimization Algorithm", Commune in Nonlinear Science Numerical Simulation, Vol. 17, No. 12, pp. 4831-4845, 2012.
 - [23] G.G. Wang, A.H. Gandomi, and A.H. Alavi, "Stud Krill Herd Algorithm", Neurocomputing, Vol. 128, No. 27, pp. 363-370, 2014.
 - using Krill Herd Algorithm",International Journal of Electrical Power and Energy Systems, Vol. 57, pp. 1-10, 2014.
 - Coordination of Overcurrent Relays using a Modified Particle [25] H.H. Zeineldin, E.F. El-Saadany, and M.M.A. Salama, "Optimal Coordination of Overcurrent Relays using a Modified Particle Swarm Optimization", Electric Power Systems Research, Vol. 76, pp. 988-995, 2006.
 - Directional Overcurrent Relays using a Novel Method to Select their Settings", IET Generation, Transmission & Distribution, Vol. 5, No. 7, pp. 743-750, 2011.

copyright © University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara, 5, Revolutiei, 331128, Hunedoara, ROMANIA http://acta.fih.upt.ro