ACTA TECHNICA CORVINIENSIS - Bulletin of Engineering Tome IX [2016], Fascicule 4 [October – December] ISSN: 2067 - 3809

¹.Csaba Attila GHEORGHIU, ².Teodor HEPUŢ

RESEARCH CONCERNING THE INFLUENCE OF THE COOLING PARAMETERS ON THE SPEED OF THE CASTING IN CONTINUOUS CASTING OF STEEL

1-2 University Politehnica Timisoara, Faculty of Engineering Hunedoara, Hunedoara, ROMANIA

Abstract: The paper presents the results of research conducted in the form of semi-finished steel casting for the manufacture of pipes that are intended to transport hydrocarbons. The research was aimed at determining the influence of the parameters that affect the process of cooling (hardening) on the liquid steel casting speed. Were included in the study the temperature of the steel at the entry into the cristalizor, steel overheating and cooling water flow in different areas, considered independent parameters and casting speed dependent parameter. The data obtained was processed in MATLAB, multiple correlations were obtained and are presented in both graphical and analytic form. The analysis conducted shows a comparison between the results obtained by three types of equations for each correlation which were analyzed from a technological point of view. **Keywords**: steel casting, matlab, casting speed, steel cooling, pipes, EBT

+

INTRODUCTION

Since the six decade of the last century, in the EBT type, capacity 100t treated in installations L.F. practice of steel casting was imposed the continuous (Ladle - Furnace), and VD (vacuum-degassing) and casting, whose share increased gradually replacing then poured in a continuous casting plant with five the conventional casting or ingot form. Continuous threads. casting steel industry in developed countries, the MATHEMATICAL DATA MODELING share of continuous casting is at least 95% of the The data processing was made in the computing total number of cast steel. The difference up to program MATLAB, using three types of correlation 100% is represented by cast steel ingots intended for equations. The results are presented both analytical processing by forging.

Continuous casting was introduced quickly in analyzed technologically indicating optimal values practice because of the advantages they represent, for the independent parameters. namely: metal production is over 99% in sequential The analysis conducted shows a comparison casting, investments, labor price is lower, significant between the results obtained by three types of reduction of thermal power and electricity, high equations for each correlation. degree of mechanization and automation etc. . Particular attention should be paid toof the speeds

of molding, drag and solidification point.

STUDY OF THE PROBLEM

The research conducted was aimed to establish the correlation equations between parameters characterizing the continuous casting of steel, temperature at the entrance to the crystallizer, steel overheating, cooling water flow in the crystallizer and different areas of the secondary cooling. Along with these parameters were followed the values of casting speed, on the casting of round blanks \$270mm.

The steel was produced in an electric arc furnace

and graphical form, each correlation being

» Equation 1:

$$z_1 = a_{(1)} x^{2+} a_{(2)} y^{2+} a_{(3)} xy + a_{(4)} x$$

 $+ a_{(5)} y + a_{(6)}$
» Equation 2:
 $z_2 = a_{(1)} + a_{(2)} x + a_{(3)} x^2 + a_{(4)} x^3 + a_{(5)} y$
 $+ a_{(6)} y^2 + a_{(7)} y^3 + a_{(8)} y^4 + a_{(9)} y^5$
» Equation 3:
 $z_3 = a_{(1)} + a_{(2)} \log(x) + a_{(3)} \log(x)^2$
 $\cdot a_{(4)} \log(x)^3 + a_{(5)}/y + a_{(6)}/(y^2) + a_{(7)}/(y^3)$
 $+ a_{(8)}/(y^4) + a_{(9)}/(y^5)$

Figure 1. Casting speed= f (Steel temperature at casting, Water flow in area 1A, equation 1);

Figure 2. Casting speed= f (Steel temperature at casting, Water flow in area 1A, equation 2)

Figure 3. Casting speed= f(Steel temperature at casting, Water flow in area 1A, equation 3)

Figure 4. Casting speed= f (Steel temperature at casting, Water flow in area 1B, equation 1)

Fascicule 4 [October – December] Tome IX [2016]

. 2.1 2 1.9 0 1.8 1.7					2.15 2.1 2.05 2 1.95 1.9 1.9 1.9 1.9 1.9 1.8	
1.6 56 Water flo	win area		1540	1545 1550 1545 at casting	1.8 1560 55 1.7 1.7	
	. 4	³ IV min 46	Steel temper			
1.9 2 55 - 21	1.85	1.8 1.9 1.84 1.92 2.05	1535 temper -	1.75 1.9 95	1.8 1.9 1.95	
1.9	1.85	^{1.8} 1. <u><u>5</u> <u>1.5</u> <u>2.05</u> 2,</u>	Steel temper	1.9 1.85 95 2	1.8 1.9 1.95 2	
1.9 2 5 2.1 4 3 2.15 2 2.05	1.55	1.8 1.8 1.84 2.05 2.05 2.05 2.95 2.95	Steel tempter	19 95 2 1.95 2 1.95	1.8 1.9 1.95 2 1.95 1.95 1.9 1.9 1.85	
1.9 2 2 2 2 4 4 2 2 2 5 2 1 4 4 2 2 5 2 1 4 4 2 2 5 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 5 2 1 1 2 1 2	155	18 15 15 15 15 2 205 2 205 2 205 2 195 19 19 19 19 19 19 19 19 19 19		1.5 1.79 1.9 1.85 2 2 1.95 19 19 19	1.8 1.0 1.95 2 1.96 1.9 1.9 1.85 1.8 1.8 1.8	
1 19 2 21 4 3 2 16 3 2 16 1 1 10 10 10 10 10 10 10 10 10 10 10 10 10 1	1.55	1.8 1.6 2.05 2.		1 179 19 185 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.8 1.9 1.95 1.05 1.05 1.9 1.85 1.8 1.8 1.8	
1.0 2.1 55 2.1 54 2.5 53 2.05 51 4.95 50 49 48 47	21	1.8 1.5 2.05 2.		1.175 95 2 1.95 1.95 1.9 5 1.8	18 1.9 1.95 1.05 1.95 1.0	

Figure 5. Casting speed= f (Steel temperature at casting, Water flow in area 1B, equation 2)

Figure 6. Casting speed= f (Steel temperature at casting, Water flow in area 1B, equation 3)

$z_1 = 0.00039 x^2 + 0.00344 v^2 + 0.00264 xv$	
+ 1.35823 x + 3.72223 y + 1153.39115	(1)
$z_{2} = 7.52129 \text{ x} + 0.00460 \text{ x}^{2} + 14.07756$ $y^{2} + 0.52186 \text{ y}^{3} + 0.00724 \text{ y}^{4}$ $R^{2} = 0.61243$ $z_{3} = 11890 \pm 48574 \log(x) \pm 66145 \log(x)^{2}$	(2)
$+ 300000 \log(x)^{3} + 16829/y + 92059/(y^{2}) + 16786/(y^{3}) R^{2} = 0.5441$	(3)
$ \begin{array}{c} z_1 {=} \ 0.00065 \ x^2 {+} \ 0.00258 \ y^2 {+} \ 0.00925 \ xy \\ {+} \ 47158 \ x {+} \ 14.56371 \ y {+} \ 2274.28489 \\ R^2 {=} \ 0.71748 \end{array} $	(4)
$ \begin{array}{l} z_2 = 1.59968 \; x + 0.00092 \; x^2 + 3.71578 \; y^2 \\ + \; 0.14897 \; y^3 + 0.00223 \; y^4 \\ R^2 {=} 0.79421 \end{array} $	(5)
$ \begin{aligned} z_3 &= 21424 + 87475 \log(x) + 11905 \log(x)^2 \\ &+ 54000 \log(x)^3 + 44161/y + 22154/(y^2) \\ &+ 36930/(y^3) \\ &R^2 &= 0.70210 \end{aligned} $	(6)
$ \begin{aligned} z_1 &= 0.00023 \; x^2 + 0.0253 \; y^2 + 0.00013 \; xy \\ &+ 0.7328 \; x + 2.7963 \; y + 627.2682 \\ &R^2 &= 0.76230 \end{aligned} $	(7)
$ \begin{aligned} z_2 &= 36.6474 \; x + 0.0239 \; x^2 + 70.4148 \; y^2 \\ &+ 2.7289 \; y^3 + 0.0396 \; y^4 + 0.0002 \; y^5 \\ &R^2 &= 0.86142 \end{aligned} $	(8)
$ \begin{aligned} z_3 &= 78060 + 31882 \log(x) + 43407 \log(x)^2 \\ &+ 197000 \log(x)^3 + 17588/y + 88439/y^2 \\ &+ 14811/y^3 \\ &R^2 &= 0.79973 \end{aligned} $	(9)
$z_1 = 0.00063 x^2 + 0.00037 y^2 + 0.00755 x y$ + 2.3735 x + 11.6326 y + 2150.4986 R ² = 0.6831	(10)

$$22 = 8.5524 \text{ x} + 0.0054 \text{ x}^{2} + 15.7575 \text{ y}^{2} + 0.4916 \text{ y}^{3} + 0.0066 \text{ y}^{4}$$
(11)

$$R^{2} = 0.6212$$

$$_{3} = 44677 + 18249 \log(x) + 24848 \log(x)^{2}$$

$$\begin{array}{r} z_3 = 44677 + 18249 \log(x) + 24848 \log(x)^2 \\ + 113000 \log(x)^3 + 38611/y + 21071/(y^2) \\ + 38268 / (y^3) \\ R^2 = 0.55463 \end{array} \tag{12}$$

Table 1. Data used for the graphical representations

Steel cast.	W	Casting speed			
Temp. [C]	1A	1B	2	3	[m/min]
1562	50	48	50	52	1.7
1551	50	48	50	52	1.7
1548	50	48	50	52	1.7
1546	52	50	52	54	1.9
1551	50	48	50	52	1.75
1552	53	48	52	55	1.7
1550	55	46	54	55	1.7
1546	56	49	53	58	1.73
1551	53	51	53	55	1.7
1546	53	50	52	54	1.8
1544	52	50	52	54	1.85
1540	58	56	58	60	1.85
1549	50	48	50	52	1.75
1546	56	53	56	58	1.85
1532	53	51	53	55	2.05
1551	56	50	50	52	1.88
1556	54	49	52	54	1.95

Figure 7. Casting speed= f (Steel temperature at casting, Water flow in area 2, equation 1)

Figure 8. Casting speed= f (Steel temperature at casting, Water flow in area 2, equation 2)

Figure 9. Casting speed=f(Steel temperature at casting, Water flow in area 2, equation 3)

Figure 10. Casting speed=f(Steel temperature at casting, Water flow in area 3, equation 1)

Figure 11. Casting speed=f(Steel temperature at casting, Water flow in area 3, equation 2)

Figure 12. Casting speed= f(Steel temperature at casting, Water flow in area 3, equation 3)

1540 1545 1550 1555 Steel temperature at casting [C]

TECHNOLOGICAL ANALYSIS OF THE RESULTS

After all the data gathering from the industrial experiments and then implementing them in the computing program MATLAB were obtained four groups of double correlation, using three types of correlation equations. All correlations obtained are presented as analytical and graphical representations in a technological meaning.

Regarding the casting temperature, graphs confirm that an increase in temperature causes a reduction in casting speed, which ensures optimum removal of heat from the system liquid steel-crystallizer, in the system crystallizer-cooling water, namely the system performing water-cooling from the secondary zone.

All four groups of data contain three types of correlations each and the influence of temperature has the same effect in all of them.

For example, Figure s 7, 8 and 9 establish that:

- » in Figure 7 steel is at a temperature of 1550C and the flow rate of cooling water from zone 2 is 511/min., the casting speed is 1.9m/min, and in Figure 8 is the same 1.9m/min;
- » Figure 9 at the same values as Figure 7 has the casting speed of 1,95m/min, a difference of 2.62% compared to the two cases above, so in terms of practice imperceptible;
- » mentioned that all four groups of data containing three types of correlations each similar results are obtained

CONCLUSIONS

Based on the research conducted the results obtained can be summarized as follows:

- E between the parameters for the secondary cooling of the casting installation and the speed of the continuous casting of steel can be established technological correlations expressed analytically and graphically;
- based on graphical representations the casting speed can be chosen in advance depending on the temperature of the steel casting and water flow;
- the results can be used in practice for casting 180mm blanks.

Bibliography

- [1.] Ioan Romulus Vasile, Turnarea continua a semifabricatelor rotunde: Notiuni teoretice minimale și notite din experienta proprie, Editura "Neutrino", 2013
- [2.] Nicolae, A., Ioana, A., Predescu C., Sandu, I.F., Sohaciu, M., Calea, G.G., Conducerea optimă a cuptoarelor cu arc electric, Ed. Fair Partners, Bucuresti, 2002.
- [3.] Instrucțiuni tehnologice de lucru la cuptorul EBT, SC AcelorMittal SA Hunedoara, 2006.

- [4.] Nica, Ghe., Socalici, A., Ardelean E., Hepuţ, T., Tehnologii pentru îmbunătăţirea calităţii oţelului, Ed. Mirton, Timişoara, 2003.
- [5.] Drăgoi, F., Cercetări privind reducerea conținutului de gaze din oțelurile elaborate și tratate pe fluxul tehnologic E.B.T. – L.F., teză de doctorat, Universitatea Politehnica Timișoara, 2012.
- [6.] Geantă, V., Procese și tehnologii de obținere a oțelurilor de înaltă puritate prin tratare în afara cuptorului. Teză de doctorat, Universitatea Politehnica București, 1998.
- [7.] Schuster, M., Perfecționări în tehnica turnării continue cu implicații privind calitatea semifabricatelor, reducerea consumului de metal și creșterea productivității instalațiilor, Gazeta Tehnico Științifică, ICEM, nr.3/1980.
- [8.] Butnariu, I., Geantă, V., Turnarea continuă a semifabricatelor de oțel, Editura Tehnică, București, 2000.
- [9.] Ardelean, E., Hepuţ, T., Ardelean, M., Turnarea continuă a oţelului, Editura Politehnica, Timișoara, 2001.
- [10.] Popa E., Cercetari privind influența proceselor fizico-chimice-metalurgice ce au loc la interfețele cristalizor-zgură-oțel lichid, Ed. Politehnica Timișoara,2009
- [11.] Lascuțoni A., Cercetări privind modelarea matematică a regimului termic al oțelului lichid la nivelul oală de turnare- distribuitorcristalizor, Teză de doctorat, Universitatea Politehnica Timișoara 2014
- [12.] Ardelean, E., Hepuţ,T., Ardelean, M., Socalici, A., Abrudean, C., Optimizarea proceselor la turnarea continuă a oţelului, Editura CERMI, Iaşi, 2007
- [13.] Ardelean, E., D., Turnarea semifabricatelor de oțel, Editura Mirton, Timișoara, 2004

copyright © University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara, 5, Revolutiei, 331128, Hunedoara, ROMANIA <u>http://acta.fih.upt.ro</u>

ISSN:2067-3809