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Abstract: This investigation presents a comparison of all the three magnetic fluid flow models (Neuringer–Rosensweig model, 
Shliomis model, Jenkins model) concerning the performance of a ferrofluid squeeze film in curved rough porous circular plates 
considering the slip velocity. The slip model of Beavers and Joseph’s has been invoked to study the effect of slip velocity. The 
stochastic averaging model of Christensen and Tonder has been deployed to evaluate the effect of transverse surface roughness. 
The pressure distribution is obtained by solving the associated stochastically averaged Reynolds type equation. The expression for 
load carrying capacity is obtained thereafter. The graphical representations establish that Shliomis model remains more favourable 
for designing the bearing system. It is also appealing to note that for lower to moderate values of slip, Neuringer–Rosensweig 
model may be adopted. Besides, Jenkins model may be used when the roughness is at lower level and the slip is at minimum. 
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INTRODUCTION 
It is known that the additives are added to the based 
lubricants to enhance the bearing characteristics in general. 
Magnetic fluids are stable colloidal suspensions composed of 
single–domain magnetic nanoparticles dispersed in a viscous 
fluid. The main advantage of magnetic fluid as lubricant, over 
the conventional oil, is that the former can be retained at a 
desired location by an external magnetic field and still 
possesses flow ability at the same time. Due to their some 
important physical and chemical properties the ferrofluids 
have been attractive in different types of engineering and 
other fields applications, such as, vacuum sealing, magnetic 
resonance, imaging, intelligent sensors, buffer solution in 
chips, drug delivery, grinding, separation, ink–jet printing, 
damper and so on. 
In the last decade, various theoretical models have been put 
forward to study the continuum description of ferrofluid flow. 
However, most of the systematic studies about the motion of 
magnetic fluids are based on the formulation given by 
Neuringer and Rosensweig [1], Shliomis [2] and Jenkins [3]. 
Neuringer and Rosensweig [1] proposed a quite simple 
model where the effect of magnetic body force was 
measured under the assumption of magnetization vector 
being parallel to the magnetic field vector. However, Shliomis 
[2] embarked on a different formulation. He observed that the 
magnetic particles in the fluid had Brownian motion and their 
rotation affected the motion of magnetic fluids. Thus, 
Shliomis developed the equation of motion for ferrofluids by 
considering internal angular momentum due to the self–
rotation of particles. Jenkins [3] modified the idea of 
Neuringer–Rosensweig to develop a model to describe the 
flow of a ferrofluid by using Maugin’s modification. 

A good number of papers (Agrawal [4], Shah and Bhat [5], 
Shah and Bhat [6], Nada and Osman [7], Deheri and Abhangi 
[8], Patel el al. [9], Patel and Deheri [10] and Patel el al. [11]) 
exist in the literature dealing with the theory of different types 
of bearing using Neuringer and Rosensweig flow model. It 
was pointed out that Neuringer–Rosensweig model 
enunciated the pressure and enhanced the performance of 
bearing system.  
Thereafter, many researchers (Kumar et al. [12], Singh and 
Gupta [13], Lin [14], Patel and Deheri [15]) dealt with the 
model of Shliomis to examine the performance of different 
bearing’s characteristics.  All the above investigations analyze 
the steady state characteristics of the bearings lubricated with 
magnetic fluids, resorting to the flow model estimated by 
Shliomis. 
It was concluded that Neuringer–Rosensweig model 
modified the pressure while Jenkins flow model modified 
both the pressure and the velocity of the Magnetic fluid. The 
steady–state characteristics of bearings with Jenkins model 
based ferrofluids were discussed by Agrawal [4], Ram and 
Verma [16], Shah and Bhat [17], Ahmad and Singh [18] and 
Patel and Deheri [19]. It was manifest in all the studies that the 
load carrying capacity of the bearing system increased with 
increasing magnetization.  
Nowadays, a significant amount of tribology research has 
been dedicated to the study of the effect of surface 
roughness or geometric imperfections on hydrodynamic 
lubrication because the bearings surfaces, in practice, are all 
rough and the height of the roughness asperities may have 
the same order as the mean bearing clearance. Under these 
circumstances, the surface roughness affects the bearing 
performance noticeably.  The deep–rooted stochastic theory 
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of hydrodynamic lubrication of rough surfaces developed by 
Christensen and Tonder [20–22] formed the basis of this 
paper. In a series of works (Ting [23], Praksh and Tiwari [24], 
Guha [25], Turaga et al. [26], Gururajan and Prakash [27], 
Gadelmawla et al. [28], Sinha and Adamu [29], Adamu and 
Sinha [30]). In fact, the model was applied to the study of the 
surface roughness for various geometrical configurations. 
The combined effect of slip velocity and surface roughness 
on the performance of Jenkins model based magnetic 
squeeze film in curved rough annular plates was examined by 
Patel and Deheri [31].  
It was concluded that the effect of transverse surface 
roughness remained adverse in general, Jenkins model based 
ferrofluid lubrication provided some measures in mitigating 
the adverse effect and this became more apparent when the 
slip parameter was at reduced level and negatively skewed 
roughness occurred. Jao et al. [32] studied a lubrication 
theory that included the coupled effects of surface roughness 
and anisotropic slips. It was found that the load ratio 
increased as the dimensionless slip length decreased (except 
the case of short bearing) or as the slenderness ratio 
increased. The effect of a magnetic fluid based parallel plate 
rough slider bearing with the comparison of all the three 
magnetic fluid flow models (Neuringer–Rosensweig model, 
Shliomis model, and Jenkins model)was investigated by Patel 
and Deheri [33]. 
However, comparison does not exist for the performance of 
the circular plates bearing system in all the three models. 
Thus, this paper investigates the combined effect of surface 
roughness and slip velocity on squeeze film characteristics of 
circular plates bearing by considering the comparison of 
three magnetic fluid flow models, namely, Neuringer–
Rosensweig model, Shliomis model and Jenkins model. 
ANALYSIS 
Figure 1 presents the formation of the squeeze film circular 
bearing considering the laminar flow of an incompressible 
fluid and transversely rough bearing surfaces between two 
circular plates, each of radiusa. The upper curved plate 
approaches the lower curved plate with normal uniform 
velocity h0̇, where h0 is the central film thickness. 
In view of the theory of Christensen and Tonder [20–22], the 
expression for the film thickness is assumed to be made up of 
two parts  

h = h� + hs                                     (1) 
where h�  denotes the mean film thickness and hs represents 
the deviation from the mean film thickness characterizing the 
random roughness of the bearing surfaces.hsis taken to be 
stochastic in nature and governed by a probability density 
function 

f(hs) = �
35
32c�

1−
hs2

c2�
3

,−c ≤ hs ≤ c

0                  , elsewhere
 c being the maximum deviation from the mean film 

thickness. The details of the meanα, the standard deviation σ 
and the parameter ε, which is the measure of symmetry of the 

random variable hs are explained in Christensen and Tonder 
[20–22]. 

 
Figure 1: Circular bearing configuration 

 

The deliberations of Bhat [34] and Patel and Deheri [35], 
discuss that the upper plate lying along the surface 
determined by the relation 

zu = h0exp(−βr2);  0 ≤ r ≤ a 
goes towards the lower plate lying along the surface given by 

zl = h0 �
1

1 + γr
− 1� ;  0 ≤ r ≤ a 

with normal velocity h0̇. Where β and γ  are the curvature 
parameters of the respective plates. The film thickness then, 
is given by (Bhat [34], Patel and Deheri [36]) 

h(r) = h0 �exp(−βr2)−
1

1 + γr
+ 1� ; 

0 ≤ r ≤ a                                   (2) 
A simple flow model proposed by Neuringer and Rosensweig 
[1] examined the steady flow of magnetic fluids in the 
presence of slowly changing external magnetic fields. The 
model was developed by the following expressions 

ρ(q�∇)q� = −∇p + η∇2q� + µ0(M�∇)H�             (3) 
∇q� = 0                                      (4) 

∇ × H� = 0                                   (5) 
M� = µ�H�                                     (6) 

∇(H� + M� ) = 0                               (7) 
where ρ is the fluid density, q� being the fluid velocity in the 
film region, H� represents external magnetic field, µ� isthe 
magnetic susceptibility of the magnetic field, prepresents the 
film pressure, η denotes the fluid viscosity and µ0 
representsthe permeability of the free space. The details can 
be seen from Bhat [34] and Prajapati [37]. 
Using equations (4)–(6), equation (3) becomes  

ρ(q�∇)q� = −∇�p −
µ0µ�

2
M2� + η∇2q� 

The Reynolds equation with modification governing the film 
pressure for Neuringer and Rosensweig model then, is given 
by 



A CTA TECHNICA CORVINIENSIS – Bulletin of Engineering 
Tome XI [2018]  |  Fascicule 3 [July – September] 

113 | F a s c i c u l e  3  

1
r

d
dr �

h3r
d
dr
�p −

µ0µ�
2

M2�� = 12ηh0̇                    (8) 
Shliomis [2] pointed out that magnetic particles of a magnetic 
fluid could relax in two ways, by the rotation of magnetic 
particles in the fluid and by rotation of the magnetic moment 
with in the particles, when the applied magnetic field 
changed. According to Bhat [34] and Patel and Deheri [35], 
the modified Reynolds type equation for Shliomis model 
comes out to be 

1
r

d
dr
�h3r

dp
dr
� = 12ηah0̇               

= 12η(1 + τ)h0̇                                         (9) 
The details of the derivation of the expression (9) are already 
discussed in Bhat [34] and Patel and Deheri [35, 31]. 
Jenkins [3] modified the theory of Neuringer–Rosensweig 
model and investigated a model to depict the flow of a 
ferrofluid. Using the Maugin’s modification, equation for the 
model for steady flow becomes (Jenkins [3], Ram and Verma 
[16], Patel and Deheri [10]). 

ρ(q�.∇)q� = −∇p + η∇2q� + µ0(M� .∇)H� +
ρA2

2
∇              

× �
M�
M

× {(∇ × q�) × M� }�                           (10) 

together with equations (4)–(7), Adenotes a material 
constant. From equations (3) and (10) it is found that Jenkins 
model is a generalization of Neuringer– Rosensweig model 
with an additional term 

ρJ2

2
∇ × �

M�
M

× {(∇× q�) × M� }� 

=
ρA2µ�

2
∇ × �

H�
H

× {(∇× q�) × H�}�               (11) 

which improves the velocity of the fluid. 
In view of the discussions of Bhat [34] and Patel and Deheri 
[35], the modified Reynolds equation for Jenkins model can 
be found in the form of, 

1
r

d
dr
⎝

⎛ h3

�1− ρA2µ�H
2η

�
r

d
dr
�p −

µ0µ�
2

H2�

⎠

⎞ 

= 12ηh0̇                               (12) 
Taking into accountthe usual assumptions of hydrodynamic 
lubrication (Bhat [34], Prajapati [37], Deheri et al. [38]) and the 
stochastic modelling of Christensen and Tonder [20–22], the 
modified Reynolds’ equation leading to the pressure 
distribution takes the form for Neuringer–Rosensweig model, 
Shliomis model and Jenkins model, respectively as, 

1
r

d
dr �

g(h)r
d
dr
�p −

µ0µ�
2

M2�� = 12ηh0̇          (13) 

1
r

d
dr
�g(h)r

dp
dr
� = 12η(1 + τ)h0̇           (14) 

and 

1
r

d
dr
⎝

⎛ g(h)

�1− ρA2µ�H
2η

�
r

d
dr
�p −

µ0µ�
2

H2�

⎠

⎞ 

= 12ηh0̇                                      (15) 
where 

g(h) = (h3 + 3h2α+ 3(σ2 + α2)h + 3σ2α+ α3 + ε

+ 12ϕH0) �
4 + sh
2 + sh

�, 
ϕ being the permeability of the porous facing and H0denotes 
the thickness of the porous facing. 
The following dimensionless quantities are considered 

h� =
h

h0
 , R =

r
a

 , P = −
h03p
ηa2h0̇

 , B = βa2, 

C = γa ,σ� =  
σ
h0

 ,α� =  
α
h0

 , ε� =  
ε

h03
 , 

M2 = H2 = kr2
(a − r)

a
, µ∗ = −

kµ0µ�h03

ηh0̇
, 

A�2 =
ρA2µ�√ka

2η
, s̅ = sh0,ψ� =

ϕH
h03

         (16) 

The associated boundary conditions are 

P(1) = 0 , �
dP
dR
�
R=0

= 0                       (17) 

Using the dimensionless quantities (16), the equations (13–
15) convert respectively into, 

1
R

d
dR �

g�h��R
d

dR
�P −

µ∗

2
R2(1− R)�� = −12   (18) 

1
R

d
dR

�g(h�)R
dP
dR
� = −12(1 + τ)            (19) 

and 

1
R

d
dR

�
g�h��

�1 − A�2R√1 − R�
R

d
dR

�P −
µ∗

2
R2(1 − R)�� 

= −12                                      (20) 
where 

g�h�� = �h�3 + 3h�2α� + 3(σ�2 + α�2)h� + 3σ�2α� + α�3 + ε�

+ 12ψ���
4 + s̅h�

2 + s̅h�
� 

With the help of the boundary conditions (16), solving 
equations (18–20), the non–dimensional pressure for 
Neuringer–Rosensweig model, Shliomis model and Jenkins 
model, found respectively as,  

P =
µ∗

2
R2(1 − R) − 6�

R
g(h�)

R

1

dR             (21) 

P = −6(1 + τ)�
R

g�h��

R

1
dR                   (22) 

and 

P =
µ∗

2
R2(1− R) 

−6�
R

g(h�)

R

1

�1 − A�2R√1− R�dR                  (23) 

One can obtain the dimensionless load carrying capacity for 
all three cases, respectively as, 
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W = −
h03

2πηa4h0̇
w = � RPdR

1

0
 

=
µ∗

40
+ 3�

R3

g�h��

1

0
dR                         (24) 

W = −
h03

2πηa4h0̇
w = � RPdR

1

0
 

= 3(1 + τ)�
R3

g�h��

1

0
dR                        (25) 

and 

W = −
h03

2πηa4h0̇
w = � RPdR

1

0
 

= µ∗

40
+ 3∫ R3

g�h��
1
0 �1 − A�2R√1− R�dR            (26)  

RESULTS AND DISCUSSIONS 
It is noticed that equations (24–26) determine the non–

dimensionalW. It is observed that the Wenhances by  µ
∗

40
  in 

the case of Neuringer–Rosensweig model and Jenkins model 
while the increase in load carrying capacity for the case of 

Shliomis model is found to be 3τ∫ R3

g�h��
1
0 dR as compared to 

the case of traditional lubricant based bearing system. This is 
perhaps due to the fact that the viscosity of the lubricant gets 
increased owing to magnetization, there by leading to 
increased pressure and hence the load carrying capacity. A 
glance at the expression of the load suggests that the 
expressions are linear with respect to the magnetization 
parameter. This means an increase in the magnetization 
parameter would always result in enhanced  W. 
The variation of Wwith respect to magnetization presented in 
Figures 2–7 ensures that an increase in the magnetic strength 
leads to enhance W, the most increase being in the case of 
Shliomis model. Although a nominal increase in W is noticed 
for Neuringer–Rosensweig model and Jenkins model, the 
effect of µ∗ is more sharp in the case of Shliomis model. 
 

 
Figure 2: Variation of W with respect to µ∗andB. 

 
 

 
Figure 3: Variation of W with respect to µ∗andC. 

 

 
Figure 4: Variation of W with respect to µ∗/τand1 s̅⁄ . 

 

 
Figure 5: Variation of W with respect to µ∗/τ and σ�. 
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Figure 6: Variation of W with respect to µ∗/τ  and ε�. 

 

 
Figure 7: Variation of W with respect to µ∗/τandα�. 

 

 
Figure 8: Variation of W with respect to Band1 s̅⁄ . 

The combined effect of curvature parameters given in Figures 
8–11 indicates that the lower plates curvature parameters 
affects the most in the case of Jenkins model. 

 
Figure 9: Variation of W with respect to Bandσ�. 

 

 
Figure 10: Variation of W with respect to Bandα�. 

 

 
Figure 11: Variation of W with respect to Candε�. 
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JE ᾱ = -0.05 JE ᾱ = -0.025
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The effect of slip velocity encountered in Figures 12–14 
suggests that the slip effect is comparatively more in the case 
of Jenkins model. 

 
Figure 12: Variation of W with respect to 1 s̅⁄ andσ�. 

 

 
Figure 13: Variation of W with respect to 1 s̅⁄ andε�. 

 

 
Figure 14: Variation of W with respect to 1 s̅⁄ andα�. 

 
Figure 15: Variation of W with respect to σ�andε�. 

 

 
Figure 16: Variation of W with respect to σ�andα�. 

 

 
Figure 17: Variation of W with respect to σ�andψ� . 
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Figure 18: Variation of W with respect to ε�andα�. 

 

 
Figure 19: Variation of W with respect to ε�andψ� . 

 

 
Figure 20: Variation of W with respect to ε�andψ� . 

 

The effect of transverse surface roughness on the Wfound in 
Figures 15–20 establishes that the adverse effect of transverse 
surface roughness is registered to be more in the case of 
Jenkins model. It is interesting here to note that for moderate 
to higher values of roughness the Shliomis model goes past 
the Neuringer–Rosensweig model in reducing the effect of 
surface roughness. 
As it happens mostly, the porosity leads to decreased Wand 
the situation turns out to be worse when the higher values of 
slip are involved. 
In addition, the comparison of graphical representations 
reveals the following: 
— All the three models improve the bearing performance. So 

far as magnetization is concerned Neuringer–Rosensweig 
model performs a little better as compared to Jenkins 
model while the Shliomis model remains the best. 

— The Shliomis model comes out to be more effective in 
comparison with other two models exclusively, from 
surface roughness point of view. Further, Neuringer–
Rosensweig model and Jenkins model differ a little when 
the combined effect of negative skewness and variance (–
ve) is considered.   

— A key point to be noted is that the standard deviation 
reduces the 𝐖𝐖 significantly which fails to happen in the 
case of parallel plate slider bearing in the absence of slip. 

— When the slip is at minimum the effect of negatively 
skewed roughness may provide some amount of help to 
improve the bearing performance in the case of all the 
three models when the variance (–ve) occurs. 

— If one considers the combined effect of roughness and slip 
the Shliomis model stays ahead of the other two models 
for all the values of porosity. 

— Up to certain extent the effect of standard deviation 
remains more manifest in the Neuringer–Rosensweig 
model as compared to Jenkins model. 

— Besides, the Shliomis model scores over the other two 
models in lowering the adverse effect of porosity and slip. 

CONCLUSION 
This study concludes that the load carrying capacity gets 
increased approximately by 2 to 3 percent as compared to 
the case of conventional fluid based curved rough porous 
circular squeeze films with slip velocity. Some of the graphical 
representations indicate that the Neuringer–Rosensweig 
model may be deployed to compensate the effect of surface 
roughness when the slip and porosity are at reduced level. 
However, for a bearing design point of view Shliomis model 
may be preferred for moderate to higher loads irrespective of 
the slip effect.  
For nominal roughness and moderate slip velocity 
Neuringer–Rosensweig model and Jenkins model perform 
alike. The bearing system always supports certain amount of 
load even when there is no flow which never happens in the 
case of traditional lubricant based bearing system. However, 
the load supported by the bearing system in the absence of 
flow remains significantly higher in the case ofShliomis 
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model. At the same time this discussion underlines that the 
roughness aspect is required to be carefully evaluated while 
designing the bearing system even if Shliomis model is in 
force. It is needless to say that a suitable choice of the ratio of 
curvature parameters may provide augmented performance 
of the squeeze film bearing system.  
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