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Abstract: This paper deals with the steady-state thermoelastic problem of functionally graded rotating disks and rings with 
arbitrary thickness profile and material distribution within the structural component. The material properties are arbitrary functions 
of the radial coordinate and the temperature field. The thin disk is subjected to axisymmetric mechanical and thermal loads. The 
linear thermoelastic problem is solved by multilayered approach in two steps, in which the solution of the thermal part of the 
problem and the solution of the pure mechanical problem with constant pressure and body forces are presented. The 
superposition of these solutions is used to solve the original problem. The temperature field is determined by the solution of the 
heat conduction problem using finite difference method. The results are compared to finite element simulations. 
Keywords: FGM, thermoelastic, arbitrary properties, temperature dependency 
 
 
INTRODUCTION 
As technology progresses at an ever increasing rate, the need 
for advanced materials becomes a priority in the engineering 
of more complex systems. This need can be seen in many 
fields in which engineers are exploring the applications of 
these new materials, such as composites or functionally 
graded materials. Functionally Graded Materials (FGMs) are 
advanced material in which the composition and structure 
gradually change resulting in a corresponding change in the 
properties of the material. In functionally graded materials the 
sharp interfaces between the constituent materials –which 
are present in composites- are eliminated. Although one of 
most advanced manufacturing method of FGMs known as 
solid freeform (SFF) method, where the components is built 
layer by layer. To produce bulk functionally graded 
components -such as disks or rings with special profile- the 
laser based SFF methods are utilized generally, such as 3D 
printing, laser cladding based method (Fig. 1), selective laser 
sintering and selective laser melting. SFF involves five basic 
steps, which are the generation of CAD data from CAD 
software, conversion of the CAD data to Standard 
Triangulation Language (STL) file, slicing the geometry (STL) 
into two dimensional cross section profiles, creating the 
component layer by layer, and the finishing operation –due 
to poor surface quality. 

 
Figure 1. Additive manufacturing of FGM components 

[www.amcor-project.eu, (2018)] 

Some textbooks such as Timoshenko and Goodier [1], Barber 
[2], Solecki and Conant [3], Baroumi and Ragab [4], Hetnarski 
and Eslami [5], Noda et. al [6] gave detailed analysis for the 
thermal stress problem for isotropic elastic disks with 
axisymmetric temperature field. Furthermore these books 
and papers [1-6] neglect the convective heat exchange on 
the lower and upper plane surfaces of the disks. Numerous 
papers, such as [7-11], present thermomechanical problems 
of functionally graded disks but the material parameters are 
special functions of the radial coordinate. 
In a papers by Pen, X. and Li, X. [12] the thermoelastic problem 
of isotropic functionally graded disk with arbitrary radial non-
homogeneity was considered. The numerical solution of the 
steady-state thermoelastic problem was reduced to a 
solution of a Fredholm integral equation. 
Zamani N. and Rahimi [13] investigated thermal and 
mechanical stresses under plane stress and generalized plane 
strain assumptions. Concerning the stress analysis of 
cylindrical and spherical structural elements, Tutuncu and 
Temel [14] presented a novel approach to the stress analysis 
of pressurized FGM disks, cylindrical bodies and spheres. In 
these axisymmetric problems the displacements and stresses 
of functionally graded hollow cylinders, disks and spheres 
subjected to constant internal pressure were calculated using 
plane elasticity theory and complementary functions 
method. 
A paper by Gönczi and Ecsedi [15] tackled the thermoelastic 
problems of radially graded thin disks with constant thickness 
and arbitrary material properties, although the body forces 
coming from the rotation and the temperature dependency 
were neglected. Multilayered approach is an effective way to 
approximate complex problems and solve them faster and 
more easily. Papers [16-18] deals with the problem of 
heterogeneous curved structural components, and 
demonstrate the efficiency and versatility of multilayered 
structures. Paper [19] dealt with the problem of multilayered 
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spherical pressure vessels using the superposition of the 
solutions of the problem with the thermal and with the 
mechanical boundary conditions.   
This paper tackles the steady-state problem of rotating 
radially graded thin disks and rings mounted on a cylindrical 
body, and subjected to combined axisymmetric temperature 
field and constant pressure. All of the material parameters are 
arbitrary functions of the radial coordinate r and temperature 
(such as E=E(r, T(r))...), while the thickness of the disk is 
arbitrary function of radial coordinate. The sketch of the 
thermoelastic problem of a functionally graded rotating disk 
is displayed in Figure 2. The inner radius of the disk is denoted 
by a, the outer radius is b and the thickness is denoted by w(r). 
Figure 2 shows the boundary conditions and the loading. For 
this problem a cylindrical coordinate system (rφz) will be 
used. There are thermal boundary conditions of the third-kind 
prescribed on the inner and outer cylindrical surfaces, 
furthermore there are no internal heat sources. γa and γb 
denote the heat transfer coefficients on the boundary 
surfaces (r=a and r=b, respectively). Tea and Teb are the 
environment temperatures at the inner and outer cylindrical 
surfaces, respectively. If γ→∞, then we have thermal 
boundary conditions of the first-kind on these surfaces.  

 
Figure 2. The disk with the loading and thermal boundary 

conditions 
On the other two boundary surfaces the environmental 
temperatures are arbitrary functions of the radial coordinate. 
Let’s assume that the heat transfer coefficient γ =γ(r, T(r)) is 
coordinate and temperature-dependent. The angular 
velocity ω is constant, pin is the constant pressure exerted on 
the inner boundary surface, while pou is the constant outer 
pressure. The problem of the previously presented 
functionally graded disk will be solved based on the 
equations of the steady-state heat conduction, the field 
equations of the thermoelasticity and an approximate 
multilayered model will be used.  
CALCULATION OF THE TEMPERATURE FIELD 
The approximate model can be seen in Fig. 3. The number of 
layers is denoted by n, the layers have constant thicknesses 
where wi>0, furthermore the material properties are 
discretized too. It is assumed, that the layers are perfectly 
bonded. Let the index i denote the quantities of the i-th layer. 
At first let’s discretize the geometry of the disk and the 
thermal boundary conditions. 

i i+1
mi i mi

i mi i mi

env,i env mi

R +RR = , λ (T)=λ(r=R ,T),
2

γ =γ(r=R ,T), w =w(r=R ),
t = T (r=R ), i=1,...,n,

                 (1) 

where λ denotes the thermal conductivity, t denotes the 
specific values of the temperature function at certain radial 
coordinate values. 

 
Figure 3. The approximate model of the functionally graded disk 

For this case the nonlinear differential equation for the 
temperature field of the i-th layer (Ti(r)) has the following form 
[20]: 

( )i i
i i env,i

i

dT 2γ1 d rλ - T -t =0
r dr dr w

 
 
 

.                   (2) 

Finding the closed form analytical solution for differential Eq. 
(2) is very hard, therefore a numerical method will be utilized 
to solve it. The points of the temperature field will be 
calculated with finite difference method. The nonlinear 
system of equations (with m points in each layer, the number 
of layers is n) for the whole model can be expressed as: 

( )

( )

( )

( )

i k+(i-1)m k+(i-1)m k+(i-1)m-1

m

i k+(i-1)mk+(i-1)m k+(i-1)m-1
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k+(i-1)m env,i

i

m

λ T=t t -t
0= +

a+(i-1)d +kΔr Δr

dλ T=tt -t
+ +

Δr dr
t -2t +t

+ λ T=t -
Δr

2γ (T=t )
- t -t ,

w
b-a b-awhere d = , Δr=
n

,
nm

i=1,...,n, while k=1,...,m-1.

        (3) 

In many cases the effective material properties can be 
expressed as a nonlinear functions of the temperature [21]: 

-1 2 3
0 -1 1 2 3Mp(T)=P (P t +1+P t+P t +P t ) .             (4) 

In Eq. (4) Mp(T) denotes the function of the considered 
effective material property, P0, P-1, P1, P2 and P3 are material 
dependent coefficients of absolute temperature t in [K]. Using 
these results we can present functions for the temperature- 
and position-dependent functionally graded material 
parameters [21]: 

[ ][ ]m
f 1 2 2Mp (r,T)= Mp (T)-Mp (T) G(r) +Mp (T)

r-ae.g. for disks or spheres: G(r)= ,
b-a

           (5) 

furthermore, indices 1 and 2 denote the constituent materials 
– in many cases metal and ceramic components. If the 
thermal conductivity has the form of Eqs. (4,5) then we write 
for the previous system of nonlinear Eqs. (3):  
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( ) -1
i k+(i-1)m 0,i -1,i k+(i-1)m

2 3
1,i k+(i-1)m 2,i k+(i-1)m 3,i k+(i-1)m

λ T=t =K +K t +

+K t +K t +K t ,
             (6) 

( )i k+(i-1)m -2
-1,i k+(i-1)m 2,i k+(i-1)m

k+(i-1)m k+(i-1)m-12
1,i 3,i k+(i-1)m

dλ T=t
=(-K t +2K t +

dr
t -t

+K +3K t ) ,
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            (7) 

where 

 

( )
( )
( )
( )
( )

1 1 2 2 2 2
-1,i -1 0 -1 0 mi -1 0

1 2 2
0,i 0 0 mi 0

1 1 2 2 2 2
1,i 1 0 1 0 mi 1 0

1 1 2 2 2 2
2,i 2 0 2 0 mi 2 0

1 1 2 2 2 2
3,i 3 0 3 0 mi 3 0

K = P λ -P λ ×G(r=R )+P λ ,

K = λ -λ ×G(r=R )+λ ,

K = P λ -P λ ×G(r=R )+P λ ,

K = P λ -P λ ×G(r=R )+P λ ,

K = P λ -P λ ×G(r=R )+P λ ,

                  (8) 

where j
0λ  (j=1,2: number of the constituent material) are 

material constants. We assume that the surface temperatures 
of the adjacent layers are equal and the radial heatflow q is 
constant. 

( )

( )

(i-1)m+1 (i-1)m
i i (i-1)m

(i-1)m (i-1)m-1
i-1 i-1 (i-1)m

t -t
-w λ T=t =

Δr
t -t

=-w λ T=t ,i=2,...,n.
Δr

              (9) 

From the third-kind thermal boundary conditions it follows 
that 

2 1
1 env,a 1 1

nm nm-1
nm env,b n nm

t -t -(t -t )w (T=t )=0,
Δr

t -t +(t -t )w (T=t )=0.
Δr

                     (10) 

The points of the temperature field can be calculated from 
the nonlinear system of equations (3), (9) and (10). Then a 
polynomial curve can be fitted to these calculated values (via 
least squares method), for power-law distributions and for 
smaller power index values (m<7) we can use 

6 5 4 3 2
appr 6 5 4 3 2

-1 -2 -3
1 0 -1 -2 -3

T =J r +J r +J r +J r +J r +

+J r+J +J r +J r +J r .
                  (11) 

THE SOLUTION OF THE THERMOELASTIC PROBLEM 
In our case the time dependency of the problem is neglected, 
and the thermoelastic problem is uncoupled which means 
that previously determined temperature field is an input 
function for the field equations of the boundary value 
problem of linear elasticity and f fMp (r,T(r)) Mp (r)→ . The 
thermoelastic problem will be divided into two parts, then 
the principle of superposition will be used to solve it. 
Using the approximate temperature field, the material 
parameters for each layer can be discretized as 

i mi mi

i mi mi

i mi mi

i mi mi

E =E(r=R ,T=t ),
ν =ν(r=R ,T=t ),

α =α(r=R ,T=t ),
ρ =ρ(r=R ,T=t ),

i=1,... ,n,

                                (12) 

where E is the modulus of elasticity, ν is Poisson’s ratio, α is the 
coefficient of linear thermal expansion and ρ denotes the 
density of the material. At first we consider the case when the 
i-th layer is under thermal loading and has a steady-state 
temperature field, furthermore the boundary surfaces of the 
layers are assumed to be traction free. The ui

T(r) thermal radial 
displacement function and the σrr,i

T(r), σφφ,i
T(r) thermal stresses 

can be determined as [22]: 

i

i+1

i

r
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i i i

R

R2 2
i i i

i i2 2
i+1 i R
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r

(1+ν )R +(1-ν )r+ α rT (r)dr,
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∫
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                   (13) 
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
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∫

∫

           (15) 

The sketch of a layer is illustrated in Fig. 4. 

 
Figure 4. The sketch of a quarter of the i-th layer 

We will assume that there are constant mechanical loading 
M

i rr,i if =σ (R ) and M
i rr,i i+1g =σ (R )  on the inner and outer 

cylindrical boundary surfaces of the i-th layer. The differential 
equation of the radial displacement field can be derived from 
the basic equation of linear elasticity for the plane stress state 
of thin disks (equilibrium equation, kinematic equations and 
stress-strain relations): 

rr φφ 2rr σ -σdσ + +ω ρr=0,
dr r

                         (16) 

rr φφ

rr rr φφ2

φφ rr φφ2

du uε = , ε = ,
dr r

Eσ = ε +νε -α(1+ν)T ,
1-ν

Eσ = νε +ε -α(1+ν)T .
1-ν

  

  

                      (17) 

2 M M M
i i i

i2 2

2 2
i i

i
i

d u (r) du (r) u (r)1+ - +K r=0,
dr dr r r

(1-ν )ρ ωK = .
E

                 (18) 
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After solving Eq. (18) we get the following expressions for the 
displacement field and the normal stresses: 

M 3i i
i i

B Ku (r)=C r+ - r
r 8

,                            (19) 

M 2i i i i
rr,i i2

i i

i i i
i 2

i

E C E B 1σ (r)= - -A r ,
1-ν 1+ν r

E (3+ν )KA = ,
8(1-ν )

                        (20) 

M M 2i i i i
JJ,i φφ,i i2

i i

E C E B 1σ (r)=σ (r)= + -A r ,
1-ν 1+ν r

i=1,...,n.

                   (21) 

Using the equations of the boundary conditions, the 
unknown parameters Bi and Ci can be determined: 

2 2 2 2
i i+1 i i i i+1 i i

i 2 2
i i i+1

(1+n )R R (A (R -R )+f -g )B = ,
E (R -R )

                 (22) 

( )
4 4 2 2

i i i+1 i i+1 i i i
i 2 2

i i i+1

(1-ν )(A (R -R )+R g -R f )C = .
E R -R

                  (23) 

The superposition principle is utilized for this problem, 
because both the previously used field equations and the 
boundary conditions are linear. This means that we can add 
the stresses and displacements caused by the mechanical 
loading (8-13) to the thermal stresses and displacements (13-
15) in order to solve this problem. For the computation of the 
combined loads the following equations are used: 

T M
i i iu (r)=u (r)+u (r),                             (24) 

T M
rr,i rr,i rr,iσ (r)=σ (r)+σ (r),                             (25) 

T M
φφ,i φφ,i φφ,iσ (r)=σ (r)+σ (r), i=1,... ,n.            (26) 

The unknown parameters fi (i=2...n) and gi (i=1...n-1) in the 
equations (19-23) can be calculated from the following 
system of equations 

i i+1 i+1 i+1u (R )=u (R ), i=1,... ,n-1,                (27) 
which ensure the continuity of the radial displacement field 
furthermore f1 and gn  are given.  

rr,1 1 1 in

rr,n n+1 n ou

σ (R )=f =-p ,

σ (R )=g =-p .
                         (28) 

The system of equations (27) has the following form with 2(n-
1) equations: 
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T T
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i+1 i+1 i+2 i+1 i+2 i+1 i+1 i+1

2
i+1 i+1

u (R )-u (R )=

(1-ν )(A (R -R )+R g -R f ) R +
E R -R

(1+ν )R R (A (R -R )+f -g ) K+ - R -
8E (R -R )R
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E R








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2 2 2 2
i+1 i+1 i+2 i+1 i+1 i+2 i+1 i+1

2 2
i+1 i+1 i+2 i+1

3i+1 i+1
i+1 i i+1

i

R +
-R

(1+ν )R R (A (R -R )+f -g )+ -
E (R -R )R

K w- R , g = f .
8 w








        (29) 

Using the previously determined parameters fi, gi and 
equations (24-26) the radial displacements and the normal 
stresses of the multilayered body can be calculated. Due to 

the multilayered model the curve of the tangential normal 
stress function may contain significant steps, but in certain 
cases there are certain point where the stress values have 
good accuracy. For example the middle points of the layers of 
a disk with constant thickness (w=const.) have the least errors, 
thus fitting an approximate curve is recommended.  
NUMERICAL EXAMPLES 
In this section a numerical example is presented for rotating 
radially graded disks with a prescribed w(r) thickness and 
temperature-dependent material properties. The results of 
the presented methods are compared to results obtained by 
finite element simulation in Abaqus. The following numerical 
data will be used for the computations:  

a=0.1m, b=0.3m, w=0.0115-0.025r [m],  
Tenv(r)=398(r-0.09)0.01a-0.01- tref [K], [K],  

Tin=100K, Tou=400K, tref=273K, m=3 and for λ  
and γ: m1=2.3, pin=60MPa, pou=0MPa, ω=400 rad/s. 

Table 1 contains the material properties of the constituent 
materials based on Eqs. (4) and (5). Figure 5 shows that the 
temperature field of thin disks depends only on the radial 
coordinate by these symmetric boundary conditions. 

 
Figure 5. The finite element model with the absolute temperature 

field and the graphs 
Table 1. Material properties of the FGM 

Material 
Property 

(MPf) 

Material (1) 

Pm0 Pm1(10-3) Pm2(10-7) Pm3(10-10) 

λ(W/mK) 15.39 -2.364 20.92 -7.223 
γ(W/m2K) 10 0 0 0 

ρ(kg/m3) 7200 0.3079 -6.53 0 
α (1/K) 12.33·10-6 0.8086 0 0 
E (Pa) 2.01·1011 0.3079 -6.53 0 
ν (-) 0.326 -0.1 0.38 0 

(MPf) 
Material (2) 

Pc0 Pc1(10-3) Pc2(10-7) Pc3(10-11) 
λ(W/mK) 1.7 -0.1276 0.06648 -1 
γ(W/m2K) 2 0 0 0 

ρ(kg/m3) 104 -0.307 2.16 -8.946 
α (1/K) 3.87·10-6 0.909 0 0 
E (Pa) 3.484·1011 -0.31 2.16 -8.94 
ν (-) 0.24 0 0 0 
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The results of the displacements and normal stresses are in 
good agreement as it can be seen in Figs. 6-8. The 
approximation of the normal stresses can improve the 
accuracy of the multilayered method. For the finite element 
calculations Abaqus CAE FE software was used. The two 
dimensional axisymmetric model can be seen in Fig. 6, the 
method of modelling is similar to the one presented in paper 
[23]. 

 

 
Figure 6. The finite element model of the disk with the radial 

displacement and the graphs of the different solutions 

 
Figure 7. The radial normal stresses within the radially graded disk 

 
Figure 8. The graphs of the tangential normal stresses 

For disks with complicated thickness function, we can use 
different point –where the relative errors are small- to fit 
approximate curves to them. For example in this numerical 
problem, the average values of the tangential stresses at the 
boundary surfaces of the layers have decent accuracy.  
CONCLUSIONS 
A steady-state thermoelastic problem of radially graded thin 
disks subjected to combined mechanical and thermal loads 
was solved based on a multilayered approach and the 
principle of superposition. The thickness of the disk was an 
arbitrary function of the radial coordinate, while the material 
properties were arbitrary functions of the radial coordinate 
and the temperature field. The temperature field was 
calculated using the method of finite differences, and was 
only the function of the radial coordinate.  
The results were compared to finite element calculations and 
they were in good agreement. One of the advantages of the 
method presented in this paper -over FEM- is the speed of the 
calculation for the elasticity problem and the accuracy of the 
method can be improved with properly chosen approximate 
function. Furthermore finite element software are expensive, 
out of reach for small- and medium-sized companies which 
makes other numerical solutions more desirable. 
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