
ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XII [2019] | Fascicule 1 [January – March]

53 | F a s c i c u l e 1

1.Anca-Elena IORDAN

DESIGN AND IMPLEMENTATION OF A GAME USING ANDROID API

1. University Politehnica Timisoara, Faculty of Engineering Hunedoara, ROMANIA

Abstract: In this article are rendered the requisite stages for the accomplishment of a game. The design of the game is
accomplished by the next two unified modelling language diagrams: use-case diagram and class diagram. By achieving these
types of diagrams, the game is described in an obvious and concrete approach, without ambiguousness. There have been
identified seven specific concepts of this game, and then there have been implemented corresponding classes for these concepts.
For the game development on the Android platform it will be used computer science branches as object oriented programming
and computational geometry, and as programming language it will be used Java Standard Edition with Android application
programming interface. The CASE tool used to represent the diagrams was ArgoUML, and the source code was written in Eclipse
integrated development environment.
Keywords: Game, UML, ArgoUML, Java SE, Android API, Eclipse IDE

INTRODUCTION
From the perspective of UML modelling language, the
analysis of the software consists in the making of use-case
diagram [1]. The games’ options will be described in a clear
manner by representing the use-cases. Each use-case
presents the interactions between user (player) and the
software (game). The representation of the use-case diagram
is showed in figure 1.

Figure 1. Use-case diagram

This diagram defines the software domain, allowing the
visualisation of the dimension and the action sphere of the
whole development process [2]. The diagram’s structure
contains:
— One actor that represents the user (player), this being the

external entity which the software interacts with.
— Three use-cases which describe the functionality of the

game.
— Relationships between user (player) and use-cases

(association relations) and, also relations between use-
cases (dependency relations).

THE DESIGN PHASE
The conceptual modelling allows identification of the most
important concepts used in the game’s implementation.
There have been identified seven specific concepts of this
game, and then there have been implemented

corresponding classes [3] for these concepts. These classes
are the following: “Peste”, “Foc”, “Animatie”, “VizualizareJoc”,
“Joc”, “Reguli” and “Principal”.
The “Peste” class contains ten atributes: nine of “int” type and
one atribute of “Bitmap” type defined in the android.graphics
package [4]. Also this class has in its componence five
methods. The structure of this class is showed in figure 2. It
can be observed that an object of this class is made from a
“Bitmap” object (composion relation), but it can be formed
from a “Canvas” object defined in android.graphics package,
two “Rect” objects defined in android.graphics package and a
“Random” object defined in java.util [5] (aggregation
relations).

Figure 2. Structure of the “Peste” class

The “Foc” class has among its componence three atributes:
two of “float” type and one atribute of “Bitmap” type defined
in the android.graphics package. Also this class contains two
methods. The representation of this class is showed in figure
3. It can be noted that an object of this class is composed of a
“Bitmap” object (composition relation), but can be formed
from a “Canvas” object defined in android.graphics package
(aggregation relations).

A CTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XII [2019] | Fascicule 1 [January – March]

54 | F a s c i c u l e 1

Figure 3. Structure of the “Foc” class

The “Animatie” class, which inherits the attributes and
methods of the “Thread” class defined in the java.lang [6]
package, has in its composition one attribute of “long” type
and two methods. The structure of this class is showed in
figure 4. It can be observed from the previous mentioned
figure that an object of this class is formed from a “Canvas”
object, a “Toast” object defined in the android.widget [7]
package and an “Intent” object defined in android.content
package. All of these three relations are aggregation relations.

Figure 4. Structure of the “Animatie” class

The “VizualizareJoc” class, which inherits the “SurfaceView”
class defined in the android.view package, has in its
composition ten attributes: three attributes of “Bitmap” type,
one attribute of “SurfaceHolder” type, two attributes of
“List<Peste>” type, one attribute of “Foc” type, one attribute
of “Animatie” type , one attribute of “long” type and one
attribute of “int” type. The sequence from the class diagram
which presents the structure of “VizualizareJoc” class is
showed in figure 5. Due to the presence of the composition
relations, it can be observed that an object of this class is
composed of: three “Bitmap” objects, one “SurfaceHolder”
object which corresponding class is defined in android.view
[8] package, two object of the generic type “List” defined in
java.util package, one “Animatie” object and one “Foc” object.
Because of the aggregation relations existing in the class
diagram, it can be observed that an object of this class is
formed also from: one “MotionEvent” object defined in
android.view package, one “Context” object defined in
android.content [9] package, one “Random” object defined in

java.util [10] package and one “Canvas” object defined in
android.graphics package.

Figure 5. Structure of the “VizualizareJoc” class

Figure 6. Structure of the “Joc” class

The “Joc” class, which inherits the attributes and methods of
“Activity” class, defined in the android.app [11] package, has in
its composition three methods. The structure of this class is
presented in figure 6. Because of the presence of the
composition relation, it can be noticed that an object of this
class is composed from an object of “VizualizareJoc” type. Due
to the presence of the aggregation relations, it can be
observed that an object of “VizualizareJoc” type can be
formed of an object of “Menu” type, an object of “MenuItem”
type, an object of “MenuInflater” type, an object of tip
“Bundle” type and an object of tip “Intent” type. The first three
objects are defined in the android.view package, the forth
object is defined in the android.os [12] package and the last
(fifth) object is defined in the android.content package.

A CTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XII [2019] | Fascicule 1 [January – March]

55 | F a s c i c u l e 1

The “Principal” class, which inherits the attributes and
methods of “Activity” class, has in its composition three
attributes and three methods. The structure of this class is
presented in figure 7. In this figure are represented the two
existing composition relations, which means that an object of
the “Principal” class is composed from an object of “Intent”
type and two objects of “Button” type defined in the
android.widget package. Also in the same figure are
represented four aggregation relations. Their meaning
consist in the fact that an object of the “Principal” class can
contain: an object of “Menu” type, an object of “MenuItem”
type, an object of “MenuInflater” type and an object of tip
“Bundle” type.

Figure 7. Structure of the “Principal” class

Figure 8. Structure of the “Reguli” class

The “Reguli” class, which inherits the attributes and the
methods of the “Activity” class has in its composition one
attribute of “Button” type and one method and it is
represented in the figure 8. In this figure it can be observed
that an object of this class is composed from an object of
“Button” type due to the presence of the composition relation
[13]. Because of the presence of the two aggregation relations

[14], it can be noticed that an object of “Reguli” type can be
formed from a “Bundle” type object and an “Intent” type
object.
GRAPHICAL USER INTERFACE
The main user graphical interface of the game is an object of
„Principal” type [15], having the graphical representation
which is showed in figure 9.

Figure 9. Main user graphical interface

By selecting the first option from the presented graphical
interface, it is instantiated an object of “Joc” class, which
allows the start of a new game (figure 9). To represent the two
species of fish it is used an instance of “VizualizareJoc” class
and to simulate the fish movement it is used an instance of
“Animatie” class.

Figure 10. Graphical interface of the game

CONCLUSIONS
In this paper it was presented the development of a game
based on UML design, Android API implementation,
ArgoUML CASE tool and Eclipse interactive environment.
The Android SDK is a strong and full-featured set of APIs that
Java developers will find usual and simple to utilize. Android

A CTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XII [2019] | Fascicule 1 [January – March]

56 | F a s c i c u l e 1

is a ripe, yet still growing, platform that many game
developers have enfolded. Not only is Android a well-fixed
platform, but the features of actual Android devices are
starting to exceed the features of just those of latter
generation console systems. The variety of users does
Android an important platform for game development
companies as respects the tools and services available.
Because the representation of the UML diagrams
corresponding to all three phases: analysis, design and
implementation, the puzzle game has been described in an
obvious and objective manner, without ambiguity. The use of
the unified modelling language for the achievement of the
game is characterized by rigorous syntactic, rich semantic and
visual modelling support.
References
[1] J. Hunt, Guide to the Unified Process featuring UML, Java

and Design Patterns, Springer London Ltd, 2014
[2] B. Bruegge, A. Dutoit, Object Oriented Software

Engineering Using UML, Patterns, and Java, Pearson
Education, 2013

[3] A. Dennis, B. H. Wixom, D. Tegarden, Systems Analysis and
Design with UML, John Wiley & Sons Ltd, 2012

[4] B. Hardy, C. Stewart, Android Programming, Pearson
Education, 2015

[5] U. Roy, Advanced Java Programming, OUP India, 2015
[6] D. Vohra, Beginning Java Programming, John Wiley & Sons

Ltd, 2015
[7] Z. Mednieks, G. Blake-Meike, M. Nakamura, Programming

Android, O’Reilly Media Inc., 2016
[8] E. Hellman, Expert Android Programming, John Wiley &

Sons Ltd, 2016
[9] B. Hardy, C. Stewart, Android Programming, Pearson

Education, 2015
[10] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, The Java

Language Specification, Oracle, 2013
[11] W. M. Lee, Beginning Android Programming with Android

Studio, John Wiley & Sons Ltd, 2013
[12] R. Rogers, Learning Android Game Programming, Pearson

Education (US), 2011
[13] F. White, Object-Oriented Software Engineering: Practical

Software Development using UML and Java, McGraw-Hill
Education, 2015

[14] B. Rumpe, Modeling with UML, Springer International
Publishing AG, 2016

[15] B. Burd, Java Programming for Android Developers, John
Wiley & Sons Ltd, 2013

ISSN: 2067-3809

copyright © University POLITEHNICA Timisoara,
Faculty of Engineering Hunedoara,

5, Revolutiei, 331128, Hunedoara, ROMANIA
http://acta.fih.upt.ro

