
ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067–3809]
TOME XIII [2020] | FASCICULE 3 [July – September]

23 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

1.Petar ČISAR, 2.Sanja MARAVIĆ ČISAR

DEVELOPMENT CONCEPTS OF VIRTUAL REALITY SOFTWARE

1.University of Criminal Investigation and Police Studies, Cara Dušana 196, 11080 Zemun–Belgrade, SERBIA
2.Subotica Tech, Department of Informatics, Marka Oreškovića 16, 24000 Subotica, SERBIA

Abstract: The evolution of appropriate hardware and software platforms has resulted in intensive increase in such
applications that have placed their action in the virtual world. This enables users a special experience – the experience
of virtual reality (VR). The software for developing VR is in many ways specific and demanding. Having in mind its great
diversity, this paper gives an overview of categorizations, general characteristics and evaluation methods. In addition,
general principles of VR software development are especially elaborated, with an emphasis on creating and testing games.
Keywords: virtual reality, software, development, evaluation, game, testing

INTRODUCTION
Virtual reality (VR) is a completely three–dimensional
(3D) environment created by a combination of
appropriate software and hardware. This software
immerses the user into the 3D environment, giving
him the ability to interact with the virtual world in
about a realistic way [1].
A few steps are required to create a good VR
experience. The virtual world is created by software
developers and then rendered in a way that users can
interact with the objects. Headsets help provide users
the illusion of being completely immersed in the 3D
environment. These 3D objects tend to respond to
changes in the user’s movement and the interactions
simulate those in the real world. Some additional
devices, such as data gloves, can also simulate human
senses (for instance, touch).
Speaking of computer reality types, it is needed to
make a clear difference between augmented reality
(AR) and VR. Both AR and VR shape the way we see
the world around us. But they do it differently [2]. The
main difference between virtual and augmented
reality is that virtual reality creates a whole new space
in which user becomes involved, while augmented
reality adds artificial objects to the real world [3, 4].
Software for creating VR is specific, with a large
number of features [5]:
 Content management – Numerous tools allow

upload either raw 3D content, which will later be
changed into a VR code or existing VR content onto
the device with the ability to manage and store
data.

 Editing content – The great part of VR software has
editing capabilities. Users can edit raw 3D or
existing VR content. Some editing features have
drag–and–drop capability, which implies that
users can edit their content with relatively modest
previous programming experience.

 Hardware – software integration – Any VR
application must integrate with adequate devices
that supports planned virtual experiences. These

devices are usually headsets, but can also be
something else.

 Cooperation – VR tools allow multiple users to
access applications remotely so they can cooperate
in real time. While cooperating, users are able to
interact on the same things simultaneously.

 Analytics – Some VR applications enable analytical
opportunities. It allows better understanding the
behaviour of audiences accessing the VR content.

VR SOFTWARE CATEGORIES
With regard to the purpose, there are various
categories of VR software:
(a) Content management systems (CMS) – A CMS is

used to collect, store and analyse all VR content in
a centralized location. As VR continues to evolve,
these tools will become increasingly important
looking to manage and organize all virtual
content. Users may upload 360–degree videos
and images directly onto these platforms and edit
them there. These tools allow publishing VR
content directly from the platform. Many of these
solutions also offer reporting and analytics, so
users may better understand the behaviour of the
audiences accessing the content. This software
gives users the possibility to create consistency
among VR experiences, ensuring brand
specificity or actual regulations.

Software in this category must have the following
characteristics: allowing 360–degree images and
video to be uploaded onto the system, offering drag–
and–drop editing capabilities, managing all created
content within the platform and publishing created
VR experiences.
(b) Development software – VR is about creating a

virtual and immersive environment to replace the
real world. Development software is used to
create native applications, typically for
computers with Windows operating system. VR
software development kits (SDK) provide the
necessary environment to design, create and test
VR experiences.

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e–ISSN: 2067–3809]
TOME XIII [2020] | FASCICULE 3 [July – September]

24 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

(c) Game engine software – A game engine provides
developers with the framework for creating a VR
video game experience [6]. A VR game engine
often contains a virtual reality SDK. These tools
enable developers to create and edit 3D
characters and fully immersive experiences. VR
game engines help developers focus on creating a
product for the end user instead of wasting efforts
on tying all elements of a gaming system together.
VR game engines are very similar to general game
engines, but are unique in that they support VR
operating systems and hardware either directly or
through an API (Application Programming
Interface) [7]. Using VR game engines, developers
can create games for various devices (for
example, game consoles and smart phones). Some
VR game engines can also create augmented
reality experiences [8].

Software in this category must have the following
characteristics: creation of custom VR video game
experiences [9], creation and editing of immersive 3D
experiences and integration with hardware that
supports VR (mobile phones or headsets).
(d) Social platforms – These platforms allow

cooperation in virtual reality from remote
locations. They enable users to meet up in the
same virtual space and communicate with each
other (speech and text).

VR social platforms offer users the ability to choose
and edit figures representing a particular person
(avatars) as well as selected environments to host a
virtual meet up. These meet ups can range from
collaborating in a virtual conference room to viewing
a presentation together. VR social platforms should
allow users to develop virtual spaces to fit their
specific needs [10], typically done so with a SDK.
These solutions may also make easier recording and
playback of virtual meetings.

Software in this category must have the following
characteristics: allowing selection of a figure to
represent them, enabling users to select and edit
environments to host meet ups, providing the
ability to communicate with other participants
and allowing participation in a given activity
together.

(e) Training simulator software – VR training
simulators can be used in almost any area in an
immersive virtual environment. These tools
should not be confused with augmented reality
training simulators, which provide training
simulations through integrating digitally–created
3D images into the real world [11]. Giving users
these experiences allows practicing and
developing the skills that may be necessary in
certain high–stress professions. However, the use
of these tools can include industries, like aviation
and transportation. Some of VR training

simulators may also have SDK functionalities
(developers can customize the simulator platform
to fit their specific needs).

Software in this category must have the following
characteristics: creation of specific virtual reality
experiences, allowing upload of relevant content
directly to headsets, supporting customized content
(specific to business) and provide reporting on
performance.
(f) Visualization software – VR data visualization

software allows users to experience aggregated
data. Data visualization enables to get analytics
presented visually so they may fully understand
what the data is communicating. VR data
visualization is used across multiple industries,
allowing working with real–time data. Also, it
allows users to display large amounts of data.
Bringing VR into data analytics enables
simultaneous cooperation on work.

Software in this category must have the following
characteristics: allowing multiple users to
simultaneously work on data, enabling visualization
in a completely virtual environment, data editing in
real time and integration with devices.
VR SYSTEM SOFTWARE
VR system software is a collection of tools and
software for designing, developing and maintaining
virtual environments and appropriate databases
where the information is stored. The tools can be
generally classified into modelling and development
tools.
Modelling tools – There are many modelling tools

available for designing objects and environments.
The most common ones are Unity, Google VR, 3ds
Max, Maya etc.

Development tools – VR is a complex and
integrative technology that borrows from many
other technologies, such as real–time 3D graphics,
tracking technology, sound processing and haptic
technology, therefore software development
flexibility and real time interaction is needed.
Starting the development of a VR application from
the basic codes (in C/C++/C#, Java, OpenGL etc.)
requires a large amount of work and time. Such
system reliability is usually low, therefore,
development tools are used.

Detailed analysis is needed in choosing VR
development tools due to the difference in flexibility
of software packages as related to input model,
interface compatibility, file format, animation
characteristics, collision detection, supported I/O
devices and support community.
Development tools used in VR content creation
include virtual world authoring tools, VR toolkits /
SDKs and APIs. But it is not uncommon to determine
that some APIs are in fact toolkits (OpenGL Optimizer
and Java 3D API).

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067-3809]
TOME XIII [2020] | FASCICULE 3 [July – September]

25 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

EVALUATION OF VE (VIRTUAL ENVIRONMENT)
Evaluation of VR systems is mostly focused on testing
its usability [12]. VR functionalities fall in two main
groups:
a) navigation and exploration
b) interaction and manipulation of 3D virtual objects
It is very important to understand user needs and
behaviours in order to adapt and improve VR
products. To do so, systematic methods have been
developed to evaluate and enhance usability issues:
Heuristic evaluation – includes methods and

techniques of problem solving, learning and
discovery based on experience.

Guerrilla testing – a fast and cheap method of
capturing feedbacks that involves a user
experience (UX) specialist asking questions about
specific areas of application. What makes this
testing unique is that participants are not engaged
in advance.

In–person (test coordinator is physically in the
same room as participants) and remote testing (via
the internet)

VR analytics (numerical analytics that give data
around particular actions – how many total views
per scene, how many hotspots initiated, etc.) and
heat maps (a visual representation of where users
are looking)

In the context of a virtual, and in order to evaluate the
realized environment, the following heuristics can be
identified [13]:
Natural engagement – User – VE interaction should

be as close as possible to the real world. The
efficacy of this heuristic will depend on the need
for naturalness and the sense of presence and
engagement.

Compatibility with the task and domain – The
behaviour of objects should correlate as closely as
possible to the expectation of real objects.

Natural expression of action – The presence in the
VE should allow the user to move and act in a
natural way and not restrict usual physical actions.
This characteristic may be restricted by the used
device.

Close coordination of user action and
representation – Response time between user
action and update of the displayed situation should
be less than 100–150 ms to avoid motion sickness
problem (very individual value) [14].

Realistic feedback – The result of actions should be
immediately visible and in accordance with the
laws of physics and the user’s expectations.

Realistic view of scenes – The visual look of the
virtual scenes should match to the user’s
perception, and the viewpoint change (by head
movement) should be rendered without delay.

Navigation and orientation possibilities – The users
need to be able to know where they are currently
and return to starting positions.

Clear entry and exit points – Entering and exiting
ways (points) from a virtual world should be
clearly explained.

Design compromises – In situations of design
compromises, they should be consistent and clearly
marked (e.g. power adjustments in navigation).

Learning abilities – Active objects should be
marked and if necessary contain additional
explanations to provide learning of VEs.

Clear turn–taking – Where system action occurs it
should be clearly signalled and rules defined for
turn–taking.

Sense of presence – The perception of engagement
and moving in a virtual world should be as natural
as possible [15].

GENERAL DEVELOPMENT PRINCIPLES
During the development phase, certain guidelines
must be followed for the final product to be
satisfactory and to pass the specific tests. These
guidelines can be divided into five categories:
compatibility, functionality, graphics and
performance, security and user interaction.
Compatibility ensures that the application remains

compatible with libraries and that the developer
takes care of recommended hardware
specifications.

Functionality ensures that the application works
within actual standards. For example, single player
games must be paused when the player takes off
the head–mounted display (HMD) or returns to the
menu. Also, the application must not draw frames
or accept input. In addition, the player must not
remain stuck in the application. For example, the
login screen must have an option to create an
account. If the application requires the Internet
and it is not available, the user must be informed of
that. The application must not lose recorded user
data.

Graphics and performance are very important in
VR applications. If the graphics is poor or the
application is slow, it can be uncomfortable for the
user and can feel nauseous. The application has to
run at 60 fps (frames per second) constantly.
Otherwise the user will feel uneasy. Also, the
application must work without freezing and
cracking. After starting, the scene must appear
within several seconds, otherwise a loading screen
should be provided. CPU and GPU (Central &
Graphics Processing Unit) must be used most
efficiently.

Security relates to the protection of privacy and the
integrity of software and user data. The application

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e–ISSN: 2067–3809]
TOME XIII [2020] | FASCICULE 3 [July – September]

26 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

must require a minimum number of permissions to
function. If some information is sent to an external
service, the user must be informed about it.

User interaction must be in accordance with
known standards. For example, Back and Home
buttons must always do the same. If the application
requires a controller, the user must be informed
about that. If the controller is supported, the user
must have the option to choose between controller
and touch pad. Also, the application must detect
whether the controller is on the left or right side.

DEVELOPMENT ENVIRONMENT
There are several ways to develop VR applications, so
they can be divided into the following groups: native
development, game development tools and web
browsers.
Native development includes drivers and software

libraries that are used in conjunction with an
operating system, such as Win32 libraries for C++
applications and Java libraries for Android. VR
devices have an SDK for platform–dependent
development and interface to access device
elements. There is a need to develop low–level
elements, like rendering of graphics or physics
within the environment. Native application
development is the most flexible and optimized, but
takes a lot of time especially if we want to cover a
larger number of platforms. Because of this, most
developers use completed development
environments.

Game development tools serve as a middleware,
which means they have implemented lower
development elements. It is an integrated
development environment (IDE), primarily for
video game development, allowing creation of
application using higher programming languages.
Due to their characteristics, video game making
tools have become the basis not only for video
games but also for other types of 3D applications.
The tool provides export to multiple platforms, has
a built–in visualizer for 2D and 3D graphics, a
drive to simulate basic physical laws, sound
processing, embedded animation, artificial
intelligence (AI), networking and more. The most
famous commercial game engine tools for rapid
application development are: Unity 3D (C#, Boo,
UnityScript), Unreal Engine 4 (C++), CryEngine 3
(Lua), Blender (Windows, Mac OS, Linux), Unity 4
and 5 (C# Mono and JavaScript), Amazon
Lumberyard (C++, Lua), CopperCube (JavaScript)
and others. Most commercial tools can be
downloaded for free for educational purposes or
for the development of start–up projects. The
companies behind specific tools give access to the
source code to their users for a fee or for free.
Regarding the open source solutions, there are:

libGDX (Java), Torque 3D, Urho3D (C++), OGRE
(Open Source 3D Graphics Engine) and others. The
source code for these tools can be downloaded
from the GitHub platform.

Web browsers involve the development of multi–
platform applications using HTML5, WebGL and
JavaScript technologies [16]. An example is
developing applications using the WebGL (web
graphics libraries) based JavaScript 3D libraries
Three.js or Babylon.js. VR–enabled web browsers
are Google Chrome VR and Mozilla Firefox
Nightly. Google and Mozilla joined resources on
developing a new standard for VR called WebVR,
whose JavaScript API allows access to a web
browser through a VR device. In addition, there is
a domain–specific language and an A–Frame tool
for WebGL–based applications. It was written by
Mozilla and is open source project.

GAME DEVELOPMENT
Due to the popularity of games among younger
population, game development gradually takes up
more space in the VR software domain. In order to
achieve the best player effect, several criteria must be
met during game development.
(1) Optimization – There are various suggestions that

can help optimize games. One of them is static
batching. All objects in a scene that do not move
can be marked as static and will then be plotted
as a single object. It's even better if these objects
use the same material, as each draw on the scene
makes one draw call.

Good level design can significantly optimize the game.
For example, if a player moves from room to room, it
is not good to load all the rooms at the beginning, but
to load them when the player enters. The downside is
that more memory would then be used when loading
each object. Therefore, it is best to separate the rooms
by levels and load them asynchronously as needed
from the code. Asynchronous level loading is very
useful if the game has multiple levels. If the level is
loaded classically (without asynchronous loading),
the game will freeze until the next level is loaded.
Pre–rendering of light is very important not only in
VR games. All static objects can be turned off real–
time shadows and then pre–render the light. This
creates a fixed texture with shadows that is rendered
static (as an image) instead of "live" shadows that are
drawn in each frame.
(2) Moving – Moving is a very important factor that

determines player's satisfaction. If there is some
moving in the game, it must be as close to natural
as possible. Otherwise, player feels nausea (VR
disease). It occurs because the body of the player
is static in the real world, while moving in the
virtual world. It is best to avoid moving, unless it
imitates the true moving of the player, as it may
affect the vestibular system (balance system).

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067-3809]
TOME XIII [2020] | FASCICULE 3 [July – September]

27 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

In classic one–person games, nausea often occurs, so
it's best to avoid them. However, if the developer
chooses this type of game, it is best to test the moving
with as many users as possible. One solution to FPS
(First–Person Shooter) play is to make constant static
visual references such as the cockpit, cabin or interior
of a car.
A popular method of moving is the fade / blinking eye
transition. The player moves from one position to
another by darkening the camera quickly to give the
user only dark in front of their eyes. Then the camera
moves to a new position and the dark colour
disappears. This is one of the pleasant and easiest ways
to move players.
(3) Player interaction – Depending on the VR model,

the game itself, and the player's choice, controls
can be made from the HMD or from the
controller. Both the device and the controller
have a touch pad that can be clicked or dragged.
The drag is detected in four directions up
(forward), down (back), left and right.

Some games also have gaze control that works as
follows: when a player looks at an object that is
predefined for interaction, a circle appears and fills
up for a second or two (depends on the developer) and
then registers as if it were a player clicked. If the
player takes his eyes off the object while filling the
circle, the circle is removed and the timer is reset.
(4) User interface and experience (UI/UX) – When

creating a user interface for VR games, there are
approaches to consider that are not used in classic
games. There are four types of UIs commonly
used: non–diegetic, diegetic, spatial and meta.

For ordinary non–VR games, the interface is all over
the screen and is called HUD (Heads Up Display). It's
a non–diegetic interface, an interface that is not
within the world but makes sense for the player as a
spectator of the game [17]. These are usually player
energy, health, score, etc. The term diegetic is taken
from the film industry where non–diegetic sound is
background music in a movie or TV program and a
diegetic sound would be some conversation. An
example of a non–diegetic interface can be seen in the
figure below.
A spatial or spatial user interface would be an
interface located within the game world itself. This
may be the main menu or some auxiliary menu in the
game. With this interface it is very important to pay
attention to the distance from the user. If it is too close,
the user will strain their eyes, and if it is too far it will
seem as if the focus is on the horizon. It is best to
position the interface a few meters away from the
user, and scale the images and text to be visible and
easy to read.

Figure 1. Non–diegetic interface (insert from Horizon

Zero Dawn)

Figure 2. Spatial interface (insert from Splinter Cell:

Blacklist)
An alternative to a spatial interface is to place the
interface elements in the environment itself – diegetic
interface [18]. It can be a real clock on the wall, a TV,
a computer, a mobile phone or even a screen on a
futuristic rifle. An example of a diegetic user interface
can be seen in the following figure – elements that
follow an object in the scene. A good example is the
energy of the enemy on stage.

Figure 3. Diegetic interface (insert from Steel Battalion)

Meta interfaces are similar to non–diegetic interfaces.
Meta interface is the effect of displaying a scene that
is not part of the VR world (e.g. change of colours if
the user loses energy). A good example is Call of Duty

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e–ISSN: 2067–3809]
TOME XIII [2020] | FASCICULE 3 [July – September]

28 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

– there is no health bar, but when the player is low on
health, the screen would be overlay with blood to
show that he is wounded. Meta UIs are usually
represented two dimensionally.
All these types of UIs can also be combined in same
game.
USABILITY TESTING OF VR APPLICATIONS
Usability is a quality attribute that indicates the ease
of use of a certain application. Usability tests consist
of short sessions where participants interact with the
application on a specific environment, while an
expert team observes, records and measures the
course of that interaction. In VR domain, the essence
of this is session–based exploratory testing, i.e.
exploring through the application in order to find and
achieve what was planned, in a fixed time period [19].
Usability tests should be performed at the right time –
when the prototypes and the application are finished.
It is highly recommended that the testers perform a
heuristic test before the users are given the devices.
The reason is that there are many issues that can be
detected in this phase and fixed before the usability
test [20].
For testing purposes, two factors can be identified:
 Participants – A reasonable number of test

participants is at least five. This enables to get a
collection of different opinions. The profile of the
user has to match the target audience of the
application. It is important to know the skills, VR
experience and the interests of the potential
participants. Different levels of expertise can be
required for making the session more interesting
and effective.

 Technical assumptions – It is necessary to have
technical equipments like headsets and adequate
devices to generate virtual reality of satisfactory
quality.

Minimal hardware assumptions:
Accessories – controllers, earphones
Computer (recommended requirements): Intel i5–

4590 (equivalent or greater), NVIDIA GTX 970 or
AMD R9 2900 (or greater), 8 GB RAM (or more),
HDMI 1.3 and 3x USB 3.0 plus 1x USB 2.0,
Windows 7 64–bit (or greater)

Headset (supported by computer) Oculus Rift, HTC
Vive (PC/Mac), console (PlayStation VR (PS4)) or
smartphone (Google (Android/iOS), Samsung
Gear VR)

As for the application, there are some general aspects
to pay attention when testing (test criteria):
User interaction with the VR interface – Moving

across different spaces inside the application.
Execution of flows – Test the application for what

is not supposed to do (analysis of border cases in
order to maximize coverage), ensure every
requirement is covered.

Functionality works expectedly – Isolation from the
real world, real world does not interrupt the
experience, immersion is achieved completely
(360–degree view, user feels sensations).

CONCLUSIONS
In the future, it can be expected that VR will continue
to evolve primarily because of the great interest of
companies and the user community. Virtual and
augmented reality devices are popular among VR
developers. Big companies are currently controlling
the VR technology market. Applications are most
accessible on desktop and mobile devices. The WebVR
and UI/UX standards are being actively developed.
New interdisciplinary fields have been created that
link VR with education, medicine, film, construction,
sales and the automotive industry. VR applications
can be developed using popular programming
languages and tools that do not require significant
financial investment from the users. The ability to
develop different types of VR applications can lead to
major changes in the implementation of information
technology. Applying best practices and standards can
lead to a quality VR experience.
VR games are very popular form of software. In the
course of their development, in addition to the general
ones, more criteria need to be met in order to achieve
fully immersive experiences. For this it is also
necessary to fulfil demanding hardware and software
assumptions, as well as specific testing methodology.
Literature
[1] T. Parisi: Learning Virtual Reality, O’Reilly Media,

2015
[2] P. Tiefenbacher, N.H. Lehment, G. Rigoll:

Augmented Reality Evaluation: A Concept Utilizing
Virtual Reality, International Conference on
Virtual, Augmented and Mixed Reality VAMR
2014, pp. 226–236.

[3] A. Amer, P. Peralez: Affordable Altered Perspectives
Making Augmented and Virtual Reality Technology
Accessible, Global Humanitarian Technology
Conference (GHTC) IEEE, 2014

[4] R. Azuma: A survey of augmented reality, Presence
6(4), 1997, pp. 355–385.

[5] T. Mazuryk, M. Gervautz: Virtual reality history,
applications, technology and future, Technical
Report TR–186–2–96–06, 1996

[6] B. Cowan, B. Kapralos: An Overview of Serious
Game Engines and Frameworks, Recent Advances in
Technologies for Inclusive Well–Being, Volume
119, Series Intelligent Systems Reference Library,
February 2017, pp. 15–38.

[7] C. Cruz–Neira, M. Fernandez, C. Portales: Virtual
Reality and Games, Multimodal Technologies and
Interaction, 2018

[8] M. Lanham: Augmented Reality Game
Development, Packt Publishing, 2017

[9] P. Bouvier, F. De Sorbier, P. Chaudeyrac, V. Biri:
Cross–benefits between virtual reality and games,

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067-3809]
TOME XIII [2020] | FASCICULE 3 [July – September]

29 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara
http://acta.fih.upt.ro/

Computer Games Multimedia and Allied
Technology Conference, 2008

[10] K.M. Stanney, R.R. Mourant, R.S. Kennedy: Human
Factors Issues in Virtual Environments: A Review of
the Literature, Presence,Vol. 7, No. 4, August 1998,
pp. 327–351.

[11] E. Ragan, C. Wilkes, D.A. Bowman, T. Hollerer:
Simulation of augmented reality systems in purely
virtual environments, In: Proc. VR, IEEE, 2009, pp.
287–288.

[12] T. Marsh: Evaluation of virtual reality systems for
usability, Proceeding CHI '99, Extended Abstracts
on Human Factors in Computing Systems, pp. 61–
62.

[13] A. Sutcliffe, B. Gault: Heuristic evaluation of virtual
reality applications, Interacting with Computers 16,
2004, Elsevier, pp. 831–849.

[14] K. Norman: Evaluation of Virtual Reality Games:
Simulator Sickness and Human Factors,
GHItaly@AVI, 2018

[15] A. Sutcliffe, K.D. Kaur: Evaluating the usability of
virtual reality user interfaces, Behaviour and
Information Technology, 19(6), November 2000,
pp. 415 – 426.

[16] T. Pant, S. Neelakantam: Learning Web–based
Virtual Reality: Build and Deploy Web–based
Virtual Reality Technology, Apress, 2017

[17] I. Iacovides, A.L. Cox, R. Kennedy, P. Cairns:
Removing the HUD: The impact of non–diegetic
game elements and expertise on player
involvement, Conference: 2015 Annual Symposium
on Computer–Human Interaction in Play (CHI
PLAY '15), 2015

[18] P. Salomoni, C. Prandi, M. Roccetti, L. Casanova, L.
Marchetti, G. Marfia: Diegetic user interfaces for
virtual environments with HMDs: a user experience
study with Oculus Rift, Journal on Multimodal User
Interfaces, January 2017, pp. 1 – 12.

[19] BlazeMeter,
https://www.blazemeter.com/blog/user–testing–
of–virtual–reality–applications/

[20] P. Dias, A. Pimentel, C. Ferreira, F. van Huussen, J.–
W. Baggerman, P. van der Horst, J. Madeira, R.
Bidarra, B.S. Santos: Usability in virtual and
augmented environments: A qualitative and
quantitative study, Proceedings of SPIE – The
International Society for Optical Engineering, 2007

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering

ISSN: 2067-3809
copyright © University POLITEHNICA Timisoara,

Faculty of Engineering Hunedoara,
5, Revolutiei, 331128, Hunedoara, ROMANIA

http://acta.fih.upt.ro

