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Abstract: In recent years, an instrumentation circular profile tests has been specified to assess the contouring accuracy 
of CNC machine tools. Such an instrumentation type test is the Double Ball Bar (DBB) test. In this paper, the influence of 
the position loop gain and mismatch of position loop gains for different machine axes are effectively studied. This work 
outlines a practical procedure for determining the position loop gain of the control system in order to minimize the 
resulting contouring errors. 
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INTRODUCTION 
The contouring performance of CNC machine tool 
can be established by assessing its ability to move 
along a specified profile by the simultaneous 
movement of two or more axes. 
When CNC machine tools are used for contouring 
applications, especially where high feed rates are 
used, significant dynamic errors can be introduced by 
the characteristics of the CNC controller and servo 
feed drive system. The assessment of such dynamic 
errors in CNC machines has traditionally been 
undertaken by machining a standard circular test 
piece. Such a test piece is outlined in some of the 
national machine tool standards American [1], British 
[2], where the circular profile is produced by the 
simultaneous motion of two linear axes. 
An alternative approach to the machining test, 
specified in  British and US machine tool standards, is 
emulation by instrumentation techniques of the circle 
test ISO 230-4 [3].  
Such an instrument type test is Double Ball Bar (DBB) 
test. Bryan [4] first developed the Double Ball Bar 
(DBB) method to inspect CNC machines contouring 
behavior. 
Although instrumentation techniques generally check 
the machine in no-load condition, they offer certain 
advantages over cutting conditions. In particular, 
tools and test specimens are not consumed and the 
time consumed in metrologising the test piece after 
machining is eliminated. 
THE CONTISURE DOUBLE BALL BAR (DBB) 
HARDWARE AND SOFTWARE SYSTEM 
On the market there are several commercially 
available Double Ball Bar (DBB) systems.  The 
CONTISURE Double Ball Bar (DBB) system is 
developed by Burdekin [5,6]. 
The CONTISURE Double Ball Bar (DBB) system is 
shown schematically in figure1. 

 
Figure 1. CONTISURE Double Ball Bar (DBB) system 

hardware set-up on CNC milling machine 
The system comprises two high precision reference 
spheres, rigidly mounted at the spindle and table 
positions. A transducer link of carbon fiber 
construction and containing two precision 
transducers is located kinematically between the two 
reference spheres.  
These two transducers contact directly onto the two 
spheres, and the summation of their outputs 
represents the change in distance of the two reference 
spheres, as the machine performs a circular 
contouring operation. The absolute distance between 
the two spheres can be established by setting the 
transducer link against a calibrated setting block. This 
feature, which is unique to the CONTISURE Double 
Ball Bar (DBB) system, ensures the complete 
traceability of data to be maintained. 
The data acquisition and analysis software offer the 
user a complete flexibility. The number of sampled 
data points can be selected, up to a maximum of 
12000 per 360 degrees scan. An analysis in the form 
of least squares best fit circles, can also be perform on 
data obtained for 360 degrees scans as well as for 
partial arcs. This feature eliminates the need for 
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precise set-up of the sphere datum with respect to the 
programmed circle. 
It is also essential that the start and end points of the 
circular contour should be selected, so that these do 
not coincide with the axis reversal points. The reason 
for this is that significant lost motion errors may occur 
at these points, and additional transients errors, 
resulting from the servo control system, may not be 
detected. In this respect the software is completely 
flexible and enables the start and end points to be 
freely selected. A start position of 22 degrees from the 
X-axis was therefore used for all tests. 
The approach to the start point of the circular profile 
should, if possible, be representative of that used 
under practical machining conditions. The software 
therefore assumes a tangential approach to the start 
and exit points on the profile. 
INFLUENCE OF THE POSITION LOOP GAIN AND 
MISMATCH OF THE POSITION LOOP GAINS FOR 
DIFFERENT MACHINE AXES ON OPTIMIZING THE 
CONTOURING ACCURACY OF CNC MILLING 
MACHINE 
One of the most important factors which influences 
the dynamical behavior of the feed drives for CNC 
machine tools is position loop gain or Kv factor. 
Tracking or following error depends on the 
magnitude of the Kv-factor. In multi-axis contouring 
the following errors along the different axes may 
cause form deviations of the machined contours. 
Generally, position loop gain Kv should be high for 
faster system response and higher accuracy, but the 
maximum allowable gains are limited due to 
undesirable oscillatory responses at high gains and 
low damping factor which produce significant 
transient errors and accuracy started to decrease 
again. Usually Kv factor is set up by the machine tool 
manufacturer 
But the question is whether the set-up value of the Kv-
factor is always optimal? Generally, contouring error 
of circular contour, according [7-12], could be 
analytically approximately calculated with following 
equations: 
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where: ec-maximal contouring error from the 
nominal radius µm, R-radius of the circle mm, v-feed 
rate mm/min, Kv-position loop gain 1s− , a-mismatch 
of position loop gains for different machine axes 
(a=(Kvx-Kvy)/Kvx and Kvx=Kv, Kvx-X axis position 
loop gain 1s− , Kvy-Y axis position loop gain 1s− ).  
If Kvx=Kvy, a=0 and equation (1) is transformed in: 
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Similar equations are given in [13,14]. These 
equations do not take into consideration the influence 
of nonlinear phenomena, such as lost motion, stick 
motion and stick-slip, etc. on the magnitude of the 
contouring errors [15,16,17,18,19,20], which can 
cause a significant difference between theoretically 
calculated and experimentally obtained results (see 
table 1 and table 2).  
Experimental contouring measurements with 
CONTISURE Double Ball Bar (DBB) test equipment 
have been undertaken on a FGS32 CNC milling 
machine with HEIDEHANN 355 TNC controller, in 
order to illustrate a methodology which could 
generally be applied to any CNC machine. Only two 
sets of axes have been considered (X and Y). The same 
procedure can be repeated for other axes. A relatively 
short link of 150 mm was used for all tests. 
In the tests the feedrate was constant v=600 mm/min, 
radius of the circle was R=150 mm, mismatch of 
position loop gains for different machine axes was 
a=0 and the Kv factor in the controller was changed 
in the range of 4 1s−  to 130 1s− . The tests were done in 
two directions clockwise (CW) and counterclockwise 
(anticlockwise) (CCW). The results of tests are given 
in table 1. 
From Table 1 it is obvious that optimal experimental 
value for Kv factor is 100 1s− . Kv factor set up by the 
machine manufacturer, was 28.3 1s− .  
We can see that increasing position loop gain Kv in 
the range of 4 to 100 1s−  decreases maximal contour 
deviation from nominal radius. Also we can see that 
the values for Kv in the range of 110 to 130 1s−  
increase contouring error. This can be explained by 
the fact that transient errors become dominant. 
Further analyses shows that with increasing the 
position loop gain from 28.3 to 100 1s−  the maximal 
contouring deviation decreases from 19.6 (CW)/22.2 
(CCW) µm to 10.2 (CW)/10.2 (CCW) µm. Figures 2-
5 show graphically some results of the experiments. 
In reference [21-23] an analytical equation for 
estimating position loop gain Kv is given: 
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where D-position loop damping, eω -nominal angular 
frequency of the feed drive electrical parts 1s− , eD -
damping of the feed drive electrical parts, mω -
nominal angular frequency of the mechanical 
transmission elements 1s− , mD -damping of the 



ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067-3809] 
TOME XIII [2020] | FASCICULE 3 [July – September] 

39 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara  
http://acta.fih.upt.ro/ 

mechanical transmission elements and T-sampling 
period s. 
 

Table 1. Influence of the position loop gain Kv on the 
magnitude of maximal contouring error from the 

nominal radius 

Kv 1s−  4 6 8 10 

ec µm (CW) 
experimentally 

46.8 39.5 38.3 32.2 

ec µm (CCW) 
experimentally 

50.7 45.5 37.5 35.2 

ec µm 
analytically with 

eq. (2) 
20.8 9.26 5.21 3.33 

Kv 1s−  20 28.3 30 40 

ec µm (CW) 
experimentally 

20.7 19.6 16.5 14.7 

ec µm (CCW) 
experimentally 

25.2 22.2 20.3 17.8 

ec µm 
analytically with 

eq. (2) 
0.83 0.42 0.37 0.21 

Kv 1s−  50 60 70 80 

ec µm (CW) 
experimentally 

13.6 12.1 11.1 10.8 

ec µm (CCW) 
experimentally 

13.3 12.4 10.8 10.7 

ec µm 
analytically with 

eq. (2) 
0.13 0.09 0.07 0.05 

Kv 1s−  90 100 110 120 

ec µm (CW) 
experimentally 

10.5 10.2 10.3 10.4 

ec µm (CCW) 
experimentally 

10.4 10.2 10.4 10.5 

ec µm 
analytically with 

eq. (2) 
0.04 0.033 0.028 0.023 

Kv 1s−  130    

ec µm (CW) 
experimentally 

10.5    

ec µm (CCW) 
experimentally 

10.6    

ec µm 
analytically with 

eq. (2) 
0.02    

 

Position loop damping of D=0.707 is preferable 
according [24-31]. That is the value, which gives 
minimal contouring errors. Other numerical values of 
the examined system are: eω =1000 1s− , eD =0.7, mω

=663 1s− , mD =0.17, and T=0.006 s. With the 
substitution in the equation (3) the position loop gain 
value Kv=106.35 1s−  is calculated. 

 
Figure 2. Polar diagram of the results of a measured 
circular test (feedrate v=600 mm/min, radius of the 

circle R=150 mm, position loop gain Kv=28.3 1s− , a=0, 
clockwise direction). 

 

 
Figure 3. Polar diagram of the results of a measured 
circular test (feedrate v=600 mm/min, radius of the 

circle R=150 mm, position loop gain Kv=100 1s− , a=0, 
clockwise direction) 

 

The experimentally tuned value of Kv-factor on the 
examined machine tool axis was Kv=100 1s− . The 
difference between analytically calculated and 
experimentally obtained value of Kv-factor is around 
6.35%, which is acceptable for practical application. 
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Figure 4. Linear diagram of the results of a measured 
circular test (feedrate v=600 mm/min, radius of the 

circle R=150 mm, position loop gain Kv=28.3 1s− , a=0, 
clockwise direction) 

 

 
Figure 5. Linear diagram of the results of a measured 
circular test (feedrate v=600 mm/min, radius of the 

circle R=150 mm, position loop gain Kv=100 1s− , a=0, 
clockwise direction) 

 

Another parameter, which influences the contouring 
accuracy is the mismatch of position loop, gains for 
different machine axes. This will result in an elliptical 
contour path with the major axes lying +/-45 
degrees, depending upon the direction of the scan, 
and increasing the contouring errors. 

The results of the experiments with mismatching 

position loop gains a= 100
Kvx

KvyKvx
⋅

−
 % are given in 

table 2. (Kvx=30 1s− , R=150 mm and v=600 
mm/min are constant.) 
 

Table 2. Influence of the mismatching of the position loop 
gains on the magnitude of maximal contouring error 

from the nominal radius ec 
a % 0 1 2 3 

ec µm (CW) 
experimentally 

14.5 17.8 17.9 18.3 

ec µm (CCW) 
experimentally 

16.5 19.7 19.9 20.3 

ec µm analytically 
with eq. (1) 

0 0.47 1.32 2.19 

a % 4 5 6 7 

ec µm (CW) 
experimentally 

18.9 19.1 19.3 19.7 

ec µm (CCW) 
experimentally 

20.9 22.5 23.1 23.3 

ec µm analytically 
with eq. (1) 

3.08 3.99 4.92 5.87 

a % 8 9 10 20 

ec µm (CW) 
experimentally 

20.2 20.7 22.1 38.7 

ec µm (CCW) 
experimentally 

25.4 27.5 29.4 52.9 

ec µm analytically 
with eq. (1) 

6.84 7.83 8.84 20.34 

a % 30 40 50  

ec µm (CW) 
experimentally 

69.5 113.2 170.9  

ec µm (CCW) 
experimentally 

85.6 128.4 186.2  

ec µm analytically 
with eq. (1) 

35.12 54.81 82.35  

 

It is obvious that with increasing the mismatch of 
position loop gains of the axes, the contouring error 
rises up. The best case is when the position loop gains 
are identical (a=0). Figures 6 and 7 show the results 
of circular test when the difference between position 
loop gains for X and Y axes is a=20%. 



ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering [e-ISSN: 2067-3809] 
TOME XIII [2020] | FASCICULE 3 [July – September] 

41 | University POLITEHNICA Timisoara / Faculty of Engineering Hunedoara  
http://acta.fih.upt.ro/ 

 
Figure 6. Polar diagram of the results of the measured 

circular tests with gains mismatched a=20% (clockwise 
direction, feedrate v=600 mm/min, radius of the circle 

R=150 mm, position loop gains Kvx=30 1s−  and 
Kvy=24 1s− ) 

 

 
Figure 7. Polar diagram of the results of the measured 

circular tests with gains mismatched a=20% 
(anticlockwise direction, federate v=600 mm/min, radius 
of the circle R=150 mm, position loop gains Kvx=30 1s−  

and Kvy=24 1s− ) 
CONCLUSION 
The work has shown that the contouring errors in 
CNC machine tool can be minimized by appropriate 
selection of position loop gain in the controller. 
Criteria used in establishing the optimum Kv value 

was minimization of maximal contouring deviation 
from nominal radius. 
The test methodology with CONTISURE Double Ball 
Bar (DBB) system, demonstrated on FGS32 CNC 
milling machine with HEIDEHANN controller, offers 
a general approach for experimental determining of a 
position loop gain. 
It was shown that the best results in contouring 
accuracy are provided when the position loop gains 
for the two axes are identical. 
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