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Abstract: In this paper, the effects of three types of porosity to bending behavior of functionally graded porous (FGP) beams are studied. The finite element procedure is 
established and based on the simple Timoshenko beam theory. The results achieved in this paper are presented and compared with other results in the references to verify the 
feasibility in implementing the formula and writing the Matlab code. On the other hand, this paper can help researchers to have an overview of the bending behavior of the 
functionally graded porous beams. 
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INTRODUCTION 
Nowadays, functionally graded (FG) material has become 
one of the smart materials and it is used in many countries. 
From a mixture of ceramic and metal, it provided the 
continuous variation of material properties from the top 
surface to the bottom surface of structure. For example, 
some structures like nuclear tanks, spacecraft, etc. are 
produced based on the above material [1-3]. Due to the 
high applicability of functionally graded material, many 
studies related to various theories have been given to 
comment the mechanical behavior of functionally graded 
structures as [4-9]. However, porosity of the material can 
occur during the manufacturing process [10-12]. So, for a 
good knowledge of porosity effect on bending behavior of 
functionally graded structures, a study related to this issue 
must be considered as soon as possible. There are three 
types of structure like beam, plate and shell, but researchers 
are usually interested in beam structures because of its wide 
applications. Furthermore, many different beam theories 
were used to analyze beam structures like simple beam 
theory [13], classical beam theory [14, 15], first-order shear 
deformation theory [16-20] or higher-order shear 
deformation theory [21, 22]. However, using a simple 
Timoshenko beam model helps us to reduce the 
computational cost with the resulting error within the 
allowable range. On the other hand, beams made of 
functionally graded porous materials should be investigated 
as much as possible to help the designer have right 
knowledge about the mechanical properties. The few 
published papers on static bending behavior of FG beams 
can be listed here. Author Chen and co-workers presented 
the Ritz method to obtain the transverse bending 
deflections and critical buckling loads, where the trial 
functions take the form of simple algebraic polynomials [23]. 
A novel model was introduced for bending of functionally 
graded porous cantilever beams by [24] related to shape 
memory alloy/poroelastic composite material. In this article, 
authors verified the accuracy of the bending model by 
three-dimensional finite element procedure. Another paper 

based on a trigonometric shear deformation theory was 
used to analyze the bending, vibration and buckling 
characteristics of functionally graded porous graphene-
reinforced nanocomposite curved beams from [25], and so 
on. From above reasons, this paper is given to investigate 
the bending behavior of functionally graded porous beams.  
This paper has four parts. Part 1 gives the introduction as 
above. Part 2 presents the formulations as well as Part 3 
shows some essential results. Finally, a few comments are 
also given in Part 4 respectively.  
FORMULATIONS 
A FGP beam with length L, width b and thickness h is 
considered. Three forms of porosity distributions are studied 
and shown in Fig. 1, in which (1) is uniform porous 
distribution and (2) and (3) are non-uniform porous 
distributions respectively. 

 
Figure 1. Functionally graded porous beam with three types of porosity 1, 2 & 3 

The material properties E(z) and G(z) can be described as 
below 
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The porosity coefficient e0 must satisfy 0 < e0 < 1 and 
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Based on finite element method (FEM), the degrees of 
freedom associated with a node of a simple Timoshenko 
beam element are a transverse displacement and a rotation 
as depicted in Fig. 2. Using the principles of simple beam 
theory, the beam element stiffness matrix will be derived 
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and k =5/6 is called the shear correct factor.  
According to the principle of minimum total potential 
energy, the element equation can be described as 
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After assembly, the bending parameters can be obtained by 
solving the following equation 
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Figure 2. The simple Timoshenko beam element 

By using three letters ‘C’, ‘S’ and ‘F’ refer to the clamped, 
simply supported and free condition, all boundary 
conditions can be revealed as below 

C SC C

C F
 

Figure 3. Three types of beam 
(CS) w(0) =φ(0)= 0 , w(L) = 0  (9) 

(CC) w(0) =φ(0)= 0 , (L) = = 0(L)w φ  (10) 
(CF) w(0) =φ(0)= 0  (11) 

More clearly, the finite element system of equations can be 
reached as below: 
≡ Input data: geometric data and material properties. 
≡ Calculating constitutive matrix. 
≡ Loop over elements: calculating element stiffness matrix 

and element force vector. 

≡ Assembling all parts in the global coordinate system 
≡ Applying boundary conditions 
≡ Solving equation for static bending 
≡ Display transverse displacements and rotations at nodes 

of system. 
NUMERICAL EXAMPLES 
Firstly, the validity of the proposed model is checked for (CC) 
and (CS) isotropic beams under a uniform load q = 106 N/m2. 
The material and geometric properties are E = 1GPa, v = 1/3, 
b = 0.1m, h = 0.1m and L = 10h. The maximum transverse 
displacement and rotation as in Table 1 are calculated and 
compared with analytical solutions [26] as follows:  
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Table 1. The comparison of the maximum transverse displacements  
at position x = L/2 of (SS) isotropic beams with L/h = 5 

CC 
maxw  maxϕ  

Analytical Paper Analytical Paper 
0.3125 0.3126 0.9375 0.9383 

CS 
maxw  maxϕ  

Analytical Paper Analytical Paper 
0.6480 0.6466 1.7187 1.7002 

 

It can be seen that the results obtained from the paper are 
completely approximate with other results. The relative error 
among above results can be explained by using different 
approaches.  

 
Figure 4. Convergence of the deflection 

Secondly, the material of the porous beam is assumed to be 
steel foam with E0 = 200 GPa, v = 1/3. The cross section of 
beam is h = 0.1m, b = 0.1m . The normalized maximum 
deflections max /=w w h  based on this study for two 
boundary conditions (CC) and (CS) are compared with other 
results of [23] as in Figure 4. Again, their convergence proves 
the reliability of the proposed method in bending analysis of 
functionally graded porous beams. 
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Figure 5. The influence of e0 on the deflection of porous beam  

with type 1 for three boundary conditions 

 
Figure 6. The influence of e0 on the deflection of porous beam  

with type 2 for three boundary conditions 

 
Figure 7. The influence of e0 on the deflection of porous beam  

with type 3 for three boundary conditions 

 
Figure 8. The influence of e0 on the deflection of (CF) porous beam  

with three types 1, 2 & 3  

 
Figure 9. The deflections of type 1 (CC) porous beam  

by changing ratio L/h and porosity factor e0 

 
Figure 10. The deflections of type 2 (CC) porous beam  

by changing ratio L/h and porosity factor e0 

 
Figure 11. The deflections of type 3 (CC) porous beam  

by changing ratio L/h and porosity factor e0 
Thirdly, by changing the boundary condition from (CC) to 
(CS) and (CF), the bending behaviors of FGP beams can be 
seen in Figures 5-7 for three types 1, 2 & 3. Once again, the 
effects of porosity on the bending behavior of this structure 
are clearly presented in these figures. Furthermore, Figure 8 
depict the influence of porosity on the deflections of (CF) 
porous beams for type 1, type 2 and type 3 respectively.  
Finally, by varying the porosity coefficient e0, the length to 
thickness ratio L/h and three types 1, 2 & 3, the results of the 
normalized transverse displacement = ( ) /w w L / 2 h  at 
position L/2 of FGP beams with (CC) boundary condition are 
plotted in Figure 9-11. As the porosity value increases, the 
deflection of FGP beam also increases and this statement 
holds for all cases. 
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CONCLUSION 
In the paper, the bending behaviors of functionally graded 
porous (FGP) beams under three different types of boundary 
condition and three kinds of porosity are presented. The 
verification results of this paper are in good agreement with 
other results in reference. The topic and approach of the 
paper are simple, the main aim of the author is to affirm the 
applicability of the simple beam theory to analyze the 
functionally graded porous (FGP) beams with acceptable 
results. 
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