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Abstract: Flood hazards have been on the increase in recent years especially along the riverbank. The hazards tends to impact on human lives and results in severe economic 
damages across the world. However, forecasting the magnitude of flood especially in Nigeria across the coastal areas have been hindered by several complications, including 
inaccurate data, poor assessment of drainage basin, pollution, and encroachment. This study made use of the Geographical Information System (GIS) tools to derive cross-
sectional variables that were significant in complementing the prediction of the magnitude of flood along Foma-river areas. Global Position System (GPS) was used to obtain 
the coordinate points along the river areas, Google earth imagery and topographical data of the study areas were obtained. The basin areas, streamlines, lengths of the river 
and its tributaries were also generated. The buffering of the river in 15 and 30 meters exposes the vulnerability status of structures along the river. Out of the 530 structures 
captured, 49 structures were highly vulnerable, while 105 structures were vulnerable to flood hazards. The predictive accuracy of the ordered logit model approximated 81%. 
While a 10% error in classification was resulting from the harmonization of the precision value (0.8026) and the recall value (0.6386). The cross-sectional variables that were 
found to be significant at α = 0.005% are the river watersheds, the vulnerability status classification of structure across the river areas, the vulnerable structures identified, 
inadequate bridges and culverts along the river areas, inappropriate size of bridges and culverts, and extreme pollution along the river areas. This study is recommending the 
use of significant cross-sectional variables to complement the prediction of magnitude of flood along the riverbanks. 
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INTRODUCTION 
Floods are among the most periodic and overwhelming 
natural hazards, which tend to impact on human lives and 
results in serious economic damages across the world. Its 
intensity tends to threaten the entire world due to the 
underlining effect of climate change (Hasselaar, 2020). 
However, evaluating the possibility and magnitude of flood 
has been hindered by several complications including, 
climate change, inaccurate data, poor assessment of 
drainage basin, pollution, and encroachment (Ayanshola, et 
al., 2018). Studies have reported some difficulties in sampling 
technique of conventional rain and discharge measurement, 
which have hindered the accurate evaluation of the 
magnitude of flood, especially along the river areas. The 
work of Nassery, et al., (2017), also established that many 
existing prediction equations are based on experimental 
data having many experimental and constant parameters 
with an ambiguous estimate often required to be fixed. Such 
problems from previous predictions are the difficulty in the 
sampling of conventional rain and discharge measurement 
networks that makes it difficult to predict accurately. 
The existing assessment of rivers tends to indicate that the 
level of flood quite differs from one river to the other even 
despite being in the same geographical location. This can be 
attributed to both natural and human factors such as 
watershed, drainage basin, drainage capacity, level of 
pollution, encroachment activities and many others (Du, et 
al.. 2019). Studies mostly focus on the relationship between 
the amount of rainfall and the magnitude of flood. This 
practice cannot be so accurate because, in actual sense, 

rainfall often not evenly distributed along the same 
geographical location, which may likely have the presence 
of several streams or rivers with their peculiar factors and 
determinants (Du et al., 2019). 
Studies have established that Geographic Information 
System (GIS) is a very powerful tools that allows the 
collection, processing of geographically related data. The 
tool has been equally used as an instrument in problem-
solving, decision-making processes, and as tool for 
visualizing data in a spatial location (Kraak, & Ormeling, 
2020). The tool has several advantages, which includes, 
analysing geographical data to determine the location of 
structures and relationships to other landscapes, 
determination of watershed, and drainage density, what is 
likely to happen to an area of interest, and particularly, how 
and in what way an area has changed over time (Picuno, et 
al., 2019). The realization of data with the use of GIS 
techniques will give a complementary approach to 
determine cross-sectional variables which are significant to 
predicting the magnitude of flood along the river course. 
Cross-sectional variables can be observed at the local scale. 
The procedures involve numerical data about intrusion and 
runoff dynamics (Rogger, et al., 2017). The variables have 
some peculiar characteristic that dictates the direction of 
flow of flood in each river or stream rather than just a 
prediction through generalization which may not be so 
accurate. Figure 1 presents the watersheds of Foma river 
areas. 
 
 



ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering 
Tome XV [2022]  |  Fascicule 4 [October – December] 

14 | F a s c i c u l e  4  

 
Figure 1.  Foma River Watersheds 

THE CHALLENGE OF FLOOD FORECASTING AND 
MITIGATION IN NIGERIA 
Nigeria is likely to face the consequences of climate change 
due to its geographical location. The country is bounded by 
located along Atlantic Ocean to the south and the Sahara 
Desert to the north. This, by implication may lead to an 
increase in the temperature that influences the rainfall 
pattern and resulting in the rise of extreme drought and 
flood (Ayanshola, et al., 2018). Due to its location, several 
cases of flooding in Nigeria have been reported in recent 
times, mostly in Sokoto, Lagos, Ibadan, Abeokuta, Gusau, 
and Makurdi (Chindo, et al., 2019). Not less than 39 people 
were killed due to flooding in central Nigeria, Plateau State, 
towards the end of July 2012. The Lamingo dam had an 
overflow and swept across several localities in Jos, and about 
200 houses were inundated or devastated after protracted 
rain. At least 35 people were reported missing, prompting 
the head of the Red Cross organization to announce that 
relief efforts were being initiated (Chindo, et al., 2019). The 
spatial distribution of areas extremely affected by the 
flooding in Nigeria is shown in Figure 2. 

 
Figure 2. Distribution of Areas Affected by Extreme Floods in Nigeria 

Similarly, Olorunfemi and Raheem (2013 reported that the 
major causes of flooding in the Ilorin are building on the 
floodplain, dumping of refuses in drainages and rivers, 
farming on the floodplain, all of which causes siltation, 
blocking of water ways and drainage channels and 
inundation.  The city of Ilorin is the Kwara State capital, 
located in the north-central part of Nigeria. The state is 
found between the latitude 8024'N and 8036'N and between 
longitude 4010'W and 4036'E, also experienced flooding in 

some part of its metropolis. During the 2017 raining season, 
the city of Ilorin experienced a devastating flood hazard.  
Many residential buildings were reported to have 
submerged after a protracted rain that lasted for hours. The 
heavy rain, which was accompanied by flooding, washed 
away asphalt on some township road. The ravaging flood 
also washed away bridges and destroyed valuable 
properties, as reported in the Nigeria Tribune newspaper 
(Azeez, 2017). The Alagbado bridge along Foma river which 
was washed away during the 2017 heavy raining season is 
captioned in Figure 3. 

 
Figure 3. Alagbado bridge along Foma-river washed away by the flood 

The aim of this study is to develop a supervised model to 
complement the prediction of the magnitude of flood along 
the banks of Foma river. Other sub-objectives are to examine 
the river buffering in 15 meters and 30 meters across the 
Foma river floodplain areas, identify the cross-sectional 
variables in complementing the prediction of the 
magnitude of flood along the buffering areas of Foma river, 
determine the significance of the cross-sectional variables in 
complementing the prediction of the magnitude of flood 
along Foma river banks using Ordered Logistic Regression 
(OLR) model, and evaluate the performance of OLR in 
complementing the prediction of the magnitude of flood 
along Foma river using performance measurement metrics. 
FLOOD EVALUATION USING GIS AND CROSS-SECTIONAL 
METHODS 
Cross-sectional study is an established method to estimate 
the outcome of interest at a particular time, for a specified 
location and it is usually applied for health planning, hazard, 
or risk exposure. In the work of Ezzatvar, et al., (2020), cross-
sectional study reflected a short period of exposition and has 
some characteristics associated with a specific period. Cross-
section design was used to study the mental health status of 
adults affected from each of the flood-affected households 
of Koonimedu village and Tami Nadu. The Study revealed 
the effects of the flood evidence in relation to standard of 
living and economy. Similarly, a multidisciplinary evaluation 
on the effects of green infrastructure and flood 
administration on physical health, mental health, economy 
and flood resilience of individuals, households, and 
communities were carried out by Venkataramanan, et al., 
(2019). Among the reasons for carrying out the cross-
sectional study is to describe survey exercise, which usually 
does not have a hypothesis. The main aim is to describe 
some groups or sub-groups about the outcome of risk 
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factors. Also, the goal is to elicit the prevalent outcome of 
interest for a descriptive population or group at a given time 
(Venkataramanan, et al., 2019).  
The GIS application to flood hazard evaluation and 
management has not been an often-used method until the 
year 2000. The work of Mejía-Navarro, et al., (1994), initially 
used the GIS to estimate several risks in many areas of 
Colorado, to determine the suitability of land. The 
development of GIS modelling for excess rainfall was the 
approach adopted by Schumann, et al. (2000). In Nigeria, 
Isma'il, and Saanyol (2013) observed that the difficulty in the 
sampling technique of the conventional rain coupled with 
discharge measurement networks makes it challenging to 
observe and predict flood accurately. Similarly, Ngene, et al., 
(2015) elicited some technical deficiencies that have been 
preventing Nigeria from getting preferred, and accurate, 
rainfall data. The research enumerated the present capacity 
of Nigeria’s rain gauge network and the need according to 
the World Meteorological Organization’s (WMO) guideline. 
Nigeria presently has 87 rain gauges, instead of 1057 (Ngene, 
et al., 2015).  In essence, the country needs extra gauges of 
970 to achieve a gauge density of 874 km2 per gauge for the 
appropriate measurement of rainfall. Because of this 
deficiency and based on the current insufficiency of gauges, 
Nigeria is suffering from a 10% error in design. Because the 
standard condition to minimize and maximize the 
effectiveness for areas on the temperate Mediterranean and 
tropical is a range of 600-900 km2, the inaccurate records of 
rain data led Nigeria to be hugely affected by the 
devastating flood of September 2012. This event had 
negative effects on the economy, roads, ports, rail lines, and 
most especially the water infrastructures (Ngene, et al., 
2015).  
METHODOLOGY 
This study focused on assessment of a complementary 
approach to flood prediction using the GIS software. The 
software was initiated through Global Positioning System 
(GPS) to obtain the coordinates of the river channels, while 
the images of the earth are referenced in eastern (X) and 
northern (Y) coordinates. The processes elicited some cross-
sectional variables from the river areas, which are significant 
in determining the magnitude of flood along the Foma river 
channel. Arc GIS 9.3® software was used to analyse high-
resolution imagery from google earth. 
 Research Designs 
The problem-focused upon and addressed in this study is to 
develop a supervised model of cross-sectional variables to 
complement the prediction of the magnitude of flood along 
the Foma river. This study investigated how GIS generated 
variables and direct observation can be utilized to develop a 
supervised model in predicting the magnitude of flood 
(dependent variable) along the Foma river. The GIS 
application elicited the river buffer to determine the 
vulnerable areas, generate watersheds, obtain the drainage 
densities, and determine the vulnerable structures along the 

buffered areas of the Foma river. Meanwhile, site 
observations resulted in the location of the bridges and 
culverts along the river, the size of the bridges and culverts 
measured, the observation of specific location along the 
river and pollution rate. The flow chart for the study is shown 
in Figure 4. 

 
Figure 4. Flow Chart Showing the Research Design 

The use of GIS tools and methods ensure the generation and 
observation of some cross-sectional variables that are 
suspected to be significant in predicting the magnitude of 
flood along the Foma river. Table 1 presents the cross-
section variables that were derived through the application 
of GIS and site observations. 

Table 1: Cross-sectional Variables from Foma river Areas 
Variable Name Task Values Data Type 

River Watershed Input Shed1, Shed2, Shed3, Shed4 Nominal 
Drainage Density Input 0.0001, 0.0002, 0.0005, 0.0007 Ordinal 
Vulnerable Status 

of structures Input Not Vulnerable, Fairly Vulnerable, 
Highly Vulnerable Ordinal 

Types of Vulnerable 
Structures Input 

Hospital, Police post, Fishery ponds, 
Abattoir, Educational, Commercials, 

Slum, Agriculture, Residentials 
Nominal 

Bridges and 
Culverts Input 

CAIS, Apalara, Oke-foma, Foma-bridge, 
Ajetunmabi, Oloje-bridge, Abata Baba-

oyo, Alagbado Bridge, Sobi-bridge 
Nominal 

Size of Bridges and 
Culvert (m) Input 2.1, 4.5, 7.2, 11.2, 14.9, 15, 19.5, 60.8 Ordinal 

River Point Input Source, Middle, Extreme, Terminal Nominal 
River Pollution Input Fair, High, Severe, Extreme Ordinal 

Magnitude of Flood Target Mild, Moderate, Severe, Extreme Ordinal 
Source: Field Work (2019) 

The study captured the vulnerability status of structures 
induced by the flood activities along the course of the Foma 
river using remote sensing technique. This was carried out 
on flood-prone areas and the buffering examined using Arc-
GIS. Structures located within 15 meters of the river bank 
were considered highly vulnerable to flood hazards, while 
those structures within 30 meters to the river were 
considered fairly vulnerable (The map of Ilorin west was 
acquired to create a database for the buffering). Also, Foma 
river map was extracted, georeferenced and digitalized into 
1:50,000 from the topographical map of Kwara state. The 
digitalization of the map involves the process of electronic 
scanning in order to convert it to points and lines using on-



ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering 
Tome XV [2022]  |  Fascicule 4 [October – December] 

16 | F a s c i c u l e  4  

screen digitization. Specifications were then made to 
identify the objects on the map so that the Arc-GIS was 
linked using the spatial data with attributes of identified 
structures. The buffering of the river revealed the number of 
structures that were highly vulnerable, fairly vulnerable and 
those that cannot be affected by flood hazards. Figure 5 
exhibits the status of vulnerable structures along the river 
areas, while Table 2 reflects the delineation of the vulnerable 
status and number of structures within each drainage area 
along the Foma river. 

 
Figure 5. Showing Vulnerable status of structures along Foma river areas 

Table 2: Vulnerable Status Classification along the River 
ID Description Frequency 
0 Not Vulnerable 377 
1 Fairy Vulnerable 105 
2 Highly Vulnerable 49 

To carry out the pre-classification exercises, the original 
sample was split into 90/10 % repeated seed training/ 
testing sets. A non-exhaustive cross-validation k-fold was 
used with k=10 so that the original sample be randomly 
divided into k equal sized subsamples. Thus, taking out the 
subsample to be known as validation variables to test the 
model, where outstanding k-1 subsamples were considered 
as training data. The process is repeated until every k-fold 
serves as the test set, such that the average record scores (E) 
of the 10 folds become the performance metric of the 
model. Where E as defined in equation 1 is the addition of 
performance scores in the iteration.  

E = 1
10

 ∑ Ei10
i=1         (1) 

 
Figure 6. Cross-validation technique in the study 

The cross-validation technique in the study is demonstrated 
in Figure 6. 
However, the dependent variable (magnitude of the flood) is 
taking more than two categories. Thus, we employed the 

use of ordered logit approach due to its capability to predict 
the presence or absence of a dependent variable. Also, its 
uniqueness in predicting the probability of each character in 
the model because the chance is a ratio. The interpretation 
of results in the odd ratio, parameter estimate, and 
probability is quite an added advantage in the area of the 
results' analyses. Since the dependent variable has more 
than two categories, and the interval between the 
categories was in the relative sequential order in a way that 
the value is indeed higher than the previous one, then the 
ordered logit approach would be deemed applicable.  
Ordered response models are usually applied when the 
dependent variable is discrete and when there is ordered 
measurement. In general, consider an ordered response 
variable Y, which can take the value Y+1, 0, 1, 2……j. Such 
that the general linear function 
   Y�= Xβ + Ԑ                                          (2) 
The latent variable Y� is not directly observed, thus, the 
threshold set by which the observed value change as the 
predicted, otherwise known as 'CUT POINT'. Cut points 
establish the relationship between Y� and Y, let αi be the 
threshold. Then. 
                         Yo     if     Y� <   αo   
                        Y=   Y1        if      αo ≤   Y� ≤ α1 

                                                                             Y2        if      α1 ≤   Y� ≤ α2 
                        Y3     if      Y� ≥   α2                                                 (3) 
The response variable Y takes four value categories: 0= mild 
flood, 1= moderate flood, 2= severe flood, and 3= extreme 
flood. Therefore, the unknown parameters αi are estimated 
jointly with βs via maximum likelihood. The α ̂i  estimates are 
reported on Gretl as cut1, cut2 , and cut3 in this case. In other 
to apply the models in Gretl, the dependent variable must 
either take only non-negative integer values or be explicitly 
marked.  
 Measurement Metrics to Determine the Performance 

Level of OLR 
In the multi-class measurement, errors in classification have 
different implications. Errors in classifying Y as X may likely to 
have different weighted implications than classifying C as D, 
and many more of such errors. The accuracy measure does 
not take any of such problem into account. The pre-
determined assumption was that the sample distribution 
among classes is balanced. Thus, in the case of imbalanced 
distribution, the most commonly used classification 
approach repeatedly produces a disappointing estimate. In 
this case, the conventional approaches need to be re-
examined to address the problem of imbalanced data 
classification. However, the confusion matrix will create an 
error table to derive the measurement metrics. 
In order to determine the level of accuracy of the significant 
classifications, the study developed 4 by 4 confusion 
matrices for each of the 10 folds. The matrices enabled the 
derivation of the measurement metrics (accuracy, F1-Score, 
precision, and recall). Previous studies have established that 
accuracy works well in describing balanced data and 
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misleading the performance in imbalanced data. 
Additionally, F1-score has proven to be a useful metric when 
the data is imbalanced. 
RESULTS AND DISCUSSION 
The 10-folds cross-validation classification accuracy is 
demonstrated in Table 3. 

Table 3: Ordered Logit Classification Performance estimate 
Ordered Logit Accuracy For the Folds 

Fold1 Fold2 Fold3 Fold4 Fold5  
80.7 80.5 80.5 80.5 80.3  

Fold6 Fold7 Fold8 Fold9 Fold10 Average 
81.1 81.3 80.1 81.6 80.3 80.7% 

It was observed that the average number of cases correctly 
predicted is 80.7%. By this impression, the OLR model is said 
to be approximately 81% good to predict the magnitude of 
flood along the Foma river areas. With this classification 
accuracy, the variables are well fitted to complement the 
prediction of the magnitude along the Foma river flood. This 
correct percentage classification is quite high and explains 
how strongly significant the variables are. Similarly, this study 
presented eight (8) cross-sectional variables in predicting 
the magnitude of flood along the Foma river for 
classification. However, six (6) out of the eight (8) variables' 
average P-values were less than 0.05. The six variables were 
found significant and relevant to complement the 
prediction of the magnitude of flood along the Foma river 
flood channel. The 6 cross-sectional variables are the river 
watersheds, vulnerable status, vulnerable structures, bridges 
and culverts (B & C), size of bridges and culverts and river 
pollution. Meanwhile, the 2 other cross-sectional variables 
were omitted due to exact collinearity, which indicated serial 
linearity between the two variables; they are the river 
drainage density and river points along the river channel. 
There was an indication of a continuous increase in the 
probability of the magnitude of flood along the river which 
was demonstrated by the cut point estimates. The estimates 
of P-values were highly significant all through the folds, and 
their coefficients were equally positive. The significance of 
the P-value is an indication that there is a steady and 
continuous rise in the level of magnitude of flood across the 
Foma river areas. Meanwhile, due to the imbalanced data 
distribution, this study further evaluates the level of 
significance of the cross-sectional variables using the 
measurement metrics. 
 The Measurement Metrics 
The OLR model estimate was quite high which is at 81%, this 
suggested a high level of classification of the cross-sectional 
variables in complementing the prediction of the 
magnitude of flood along Foma river. This study further 
described the classification performance of OLR using the 
measurement metrics due to the high disparity in the 
sampling distribution. Figure 7 demonstrates the level of 
sampling disparity in the study. There was an indication of 
high disparity in the magnitude of flood along the Foma 
river areas. Thus, the prediction of the magnitude of flood 
tends to favour the higher categories compared to the lower 

categories. In order to describe the performance of the OLR 
model, F1-score metric was used to measure the OLR 
performance and minimize the sampling disparities through 
the use of precision and recall. 

 
Figure 7. Level of magnitude of flood along Foma river areas 

The weighted average of precision and recall was used to 
measure how good the OLR classification is at predicting the 
magnitude of flood along Foma river. The four-
measurement metrics employed in this study are the 
accuracy, precision, recall and F1-score to determine the 
strength of the prediction. The results of four-measurement 
metrics for the models are presented in Table 4. 

Table 4: Values of the Measurement Metrics 

Folds Measurement metrics 
Accuracy Precision Recall F1-score 

Fold - 1 0.8092 0.8778 0.6462 0.7444 
Fold -2 0.8050 0.8764 0.6390 0.7390 
Fold - 3 0.8050 0.8761 0.6397 0.7394 
Fold - 4 0.8050 0.6262 0.6209 0.6236 
Fold - 5 0.8029 0.8739 0.6381 0.7376 
Fold - 6 0.8113 0.6321 0.6259 0.629 
Fold - 7 0.8134 0.8822 0.6681 0.7601 
Fold - 8 0.8008 0.6224 0.6221 0.6222 
Fold - 9 0.8155 0.8833 0.6463 0.7466 

Fold - 10 0.8029 0.8750 0.6396 0.7390 
Average 0.8071 0.8026 0.6386 0.7081 

 
Figure 8. Supervised Model for Complementing the Prediction of Magnitude of Flood 

along Foma river using Cross-sectional Variables 
The average values of each of the multi-class metrics derived 
in Table 4 were directed towards determining the 
performance of the OLR model in predicting the magnitude 
of flood along Foma river areas. Figure 8 illustrates the 
supervised model for complementing the prediction of the 
magnitude of flood using cross-sectional variables. 
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CONCLUSION AND RECOMMENDATIONS 
This study examined the influences of precision, recall, and 
F1-score on the process of adjusting the inherent sampling 
distribution along the course of offering a significant cross-
sectional variable in complementing the prediction of the 
magnitude of flood along Foma river areas. The ordered 
logit regression average prediction value 80.71% is 
vulnerable to error due to the high disparity in the sampling 
distribution. Consequently, the model was subjected to 
further evaluation using the F1-score analysis. The F1--score 
made use of the weighted averages of precision value 
(0.8026) and recall value (0.6386) to reduce the sampling 
error by approximately 10%, such that, the model's average 
capacity to predict the magnitude of flood along Foma river 
areas is 70.81%. Similarly, the model classification provided 
six (6) out of the eight (8) cross-sectional variables evaluated 
to be significant in complementing the prediction of the 
magnitude of flood along Foma river areas. The average P-
values of the six cross-sectional variables are less than 0.05. 
While the other two variables were considered insignificant 
due to absolute collinearity.  
The river buffer areas within 15 meters and 30 meters 
established the vulnerability status of structures along the 
Foma river floodplain. This exercise identified a total number 
of 154 structures to be vulnerable to flood hazards along the 
riverbank areas. One hundred and five (105) of the structures 
were vulnerable, while forty-nine (49) similar structures were 
at a very high risk of flood hazard along the river areas. In 
conclusion, this study is recommending the use of 
significant cross-sectional variables to complement the 
prediction of magnitude of flood along the riverbanks.  
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