
ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XV [2022] | Fascicule 4 [October – December]

95 | F a s c i c u l e 4

1.Amel DŽANIĆ, 1.Amel TOROMAN, 2.Alma DŽANIĆ

AGILE SOFTWARE DEVELOPMENT: MODEL, METHODS, ADVANTAGES AND DISADVANTAGES

1.University of Bihać, Faculty of Technical Engineering, Ulica Irfana Ljubijankića bb, 77000 Bihać, BOSNIA & HERZEGOVINA
2.University of Bihać, Faculty of Economics, Ulica Pape Ivana Pavla II/2, 77000 Bihać, BOSNIA & HERZEGOVINA

Abstract: The only constant in today's world is a change and therefore the changes are an unavoidable factor also from the aspect of software production. Poor reaction to
changes in traditional software development methods has led to the emergence of a new agile philosophy, which has embraced change and put it in its focus. The agile
approach essentially implements the set of values and principles given in the agile manifesto. This paper presents an agile model that can be recognized in any agile method.
Furthermore, the paper presents the several agile methods that are often used today. The advantages and disadvantages of these methods are stated, and software
development through each of these methods is described. The result of the paper is the discussion on the use of these methods, as well as the main problems and the possible
directions of development of these methods is addressed.
Keywords: Agile software, development, advantages and disadvantages

INTRODUCTION
Software has major impact in modern life and business, and
therefore it is very important to study and research those
methods for software developments. Thus, until the end of
the 90s of the last century, the software process, i.e. software
development, was exclusively based on traditional methods
of software development, which were characterized as
“heavy” methods [1]. This software process generally
consisted of the following steps [1]:
≡ The project plan must be completed first – that is why

these methods are also called plan–driven methods
≡ All software requirements must be written down – i.e.

requirement specification
≡ The whole project completed and met requirements
≡ Created source code that implements project

documentation with all requirements
≡ Fully test the software to see if it meets all the

requirements
The biggest problem with traditional methods of software
development has been the way they respond to changes in
requirements, i.e. the traditional way of software
development did not respond well to the changes. There
have been situations where changes in software
specifications (requirements) have required large and
expensive interventions on developed software [2].
A lot of time was spent on software development, so the
customer received software that was already obsolete in
some areas, and these areas required modifications. Because
of all this, there was a need for the so–called an easy process
where the main goal was to accelerate software
development and successfully respond to changes in
requirements. These methods are called agile software
development methods.
The table shows the main differences between agile and
traditional methods of software development

Table 1. Differences between agile and traditional approach of software
development [2]

Parameter Traditioanl methods Agile methods
Simplicity of
modification Hard Light

Development approach Predictable Adaptive
Development

orientation Orientation on process Orientation on customer

Size of project Large Small or Medium
Planning scale Long term Short term

Mode of management Command and control Leadership and cooperation

Learning Continuous learning with
development

Learning is secondary to
development

Documentation High Low
Type of organization High income moderate and low income

Number of employees Huge Small
Budget High Low

Size of team Medium Small

AGILE APPROACH OF DEVELOPING SOFTWARE
Adaptable, "light" methods have been created and
promoted through the official agile alliance made up of 17
software engineers and consultants, the famous Agile
Manifesto was created in 2001. In this software development
philosophy, a set of 4 values and 12 principles reflect the
essence of agility, and is available on the website
https://agilemanifesto.org/ [3].
 Agile model
There are a very large number of agile methods that fully
support the principles and values given in the agile
manifesto. It is possible to determine the general form of the
agile development process in four steps as show on picture
1 [4]:
≡ Project selection and approval – is the first phase where

team consisting of developers, managers, and customers
establishes the scope, purpose, and requirements of the
product.

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XV [2022] | Fascicule 4 [October – December]

96 | F a s c i c u l e 4

≡ Project initiation – is a second phase where a working
architecture of the system is created, which is discussed
by all stakeholders with the necessary deadlines and
working frameworks.

≡ Construction of iterations – is third phase of this model in
which iterations are made, i.e., this phase consists of
planning and building the iterations. In other words,
there is a successive incremental process that results in
software that meets the evolution of user requirements.
This is a consequence of the close collaboration of all
stakeholders, and in this way the quality of the software is
most effectively ensured. Also, each iteration of the
software needs to be tested.

≡ Product release – is the final phase of this model. In this
phase, the final software testing takes place, as well as
work on necessary corrections and software
documentation. Then product is realised, and end user
training begins. Also, the working team may stay to
maintain and improve the project as well as user support.

Project selection
and approval Project initiation Construction of

iterations Product release

Iteration 1

Iteration 2

Iteration 3

Design, programming , testing

Design, programming , testing

Design, programming , testing

Figure 1. Agile model – general form of the agile development [4]
The advantages of this model are [4]:
≡ Fast response to the user, the first deliveries are in weeks

and not in months. A project always has demonstrable
results – the final version of each iteration is usable
software.

≡ Great flexibility, very often combined with other existing
models.

≡ Due to the use of feedback loop and small realises, a
high–quality product is created with a high degree of
client satisfaction.

≡ Developers are more motivated – they prefer to produce
usable solutions, and they don't like to compile
documentation.

The disadvantages of this model are [4]:
≡ They are problematic for larger projects. There are

discussions about their applicability to larger projects.
≡ The documentation is questionable. Since the

documentation is on the back burner, the question arises
as to whether the necessary documentation will be
compiled at all. This is a big problem, since
documentation is an integral part of what developers
produce.

AGILE METHODS
 Extreme programming – XP
The extreme programming method – XP is an agile software
development method developed by Kent Beck in 1996. The
XP method represents a lightweight, flexible, disciplined,

low–risk approach to software development that has the
ability to manage unclear or rapidly changing requirements.
The XP method emphasizes teamwork, therefore managers,
developers and clients are part of the team. Team size is one
of the limitations of extreme programming, as this method is
considered to be suitable for small and medium–sized
teams, reportedly anywhere from 2 to 12 team members,
although projects with 30 members have been reported
successful [5][6].
The life cycle of XP method has six phases and they are as
follows [6]:
≡ The research phase deals with requirements modelling

and system architecture. In this phase, user requirements,
tools and technology are defined. A schedule of system
versions is created, i.e. software releases are planned.
Based on the schedule, plans are made for each
individual iteration. The user writes user stories that
represent the software specification [7]. For each user
story, it is necessary to create at least one test that will
confirm the correctness of the user story [5]. According to
the assessment, the user story should be implemented
within 3 weeks, and if it takes longer, it should be divided
into several stories.

≡ In the Planning Phase, priorities for the implementation
of user stories are set, and the content of the first small
release of the software is agreed upon. The developer
makes an estimate of how much effort and time each
user story requires, and then an implementation
schedule is agreed upon. The first small release of the
software should be completed within two months. If the
research phase is done well, then the planning phase
should last a few days. The basic goal of planning a
software release is to find software functions, and to
make a schedule for delivering these functions [8]. During
the planning phase, the team size, schedule, and who
owns the code and working hours are determined [9].

≡ The iterations to release phase includes basic
development activities such as: coding, testing and
integration [9]. This is an iterative phase where each
iteration can last from one to four weeks. In the first
iteration, the stories that make up the structure of the
entire software architecture were chosen [7]. After
coding, functional testing is performed, and if it is
successful, then the code is integrated. If it happens that
the code does not fulfil the request, then the so–called
refactoring. Quick meetings are used to review
development progress or to resolve any issues should
they arise. After the final iteration of the code, the
production phase begins.

≡ Production phase – software is delivered in small
releases. A small piece of planned software is released
that implements some business need or function.
Frequent releases allow XP to build the desired system
incrementally. The duration for one release is from one to
four weeks, and it can contain a certain number of

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XIV [2022] | Fascicule 4 [October – December]

97 | F a s c i c u l e 4

iterations. In order to check whether the software is ready
for the production phase, tests must be performed [8].

≡ Maintenance phase – the software continues to evolve
for some time. In the maintenance phase, certain new
functionalities are created, while the old ones continue to
work [7]. It can also lead to the introduction of a new
software architecture, but then the team must be much
more attentive to the software in use [9].

≡ Death phase – there are two possible situations in which
the software reaches this phase. The first reason is that all
software functionalities that users need have been
developed, and users are satisfied, and there are no more
user stories to implement [9]. Then it is time to carry out
the final release of the software, and approach the
creation of software documentation. Another reason is
that the system does not provide the desired outputs, or
if it becomes too expensive for further development,
then it is better to stop the software development, which
is called entropy death of the system.

The main advantages of the XP method can be summarized
in the following few points [2]:
≡ Incremental development is supported through small

and frequent software releases.
≡ Improving productivity through a feedback mechanism.
≡ Maintaining simplicity through constant refactoring.
≡ Improving quality through the creation of automated

tests before installing functionality.
On the other hand, the method also has its disadvantages,
namely [2]:
≡ Reduced capability for distributed teams as it focuses on

community and co–location.
≡ This approach to software development requires

additional training for newly joined team members.
≡ XP depends on informal documentation such as user

stories, code, etc.
≡ The practice of user involvement is effective, but on the

other hand, it is also very stressful as well as quite
expensive because it can keep the customer away from
his real work for a long time.

 SCRUM method
Scrum represents an agile method of software development
that focuses on the management of the iterative process,
instead of individual technical approaches. The Scrum
method was developed to manage the system
development process. The basis of this method is an
empirical approach that applies the ideas of industrial
process management theory to system development,
resulting in an approach that reintroduces the ideas of
flexibility, adaptability and productivity. This approach does
not define any specific software development techniques for
software implementation. Scrum concentrates on how team
members should function to produce a system flexibly in a
constantly changing environment [10].
The lifecycle of SCRUM method has three phases as follows
[2]:

≡ The initial phase is the outline planning phase in which
the general goals of the system being designed and
developed are stated. The project team, necessary tools
and resources are also defined. A PBL (product backlog) is
generated, which is used to document requirements in
the form of user stories and functionality. The requests
are then analysed and given specific priorities, and the
assessment of the work required for each request is
carried out by the product owner, who is also responsible
for maintaining a visible and transparent PBL [10]. The
PBL is subject to continuous updating since user requests
are implemented incrementally, and also during software
development there may be a change in the priority of
user requests. It is important to note that the
documentation is never complete and is supplemented
during the process itself in the so–called Sprint Backlogs.

≡ Sprint phase is a time period of one month or less (most
often two weeks) in which one increment of the iterative
process is made [10]. The advantage of this way of
working is that it is possible to deliver part of the software
product to the client at the end of the sprint and to
adapt part of the product to new requirements in the
next cycle based on his suggestions. In this way, it is
possible to learn in the course of the work, and not at the
end, based on experience and introduce changes and
improvements that give a better end result, that is, a
good software product with which the client will be
satisfied. Sprint contains the following activities, which
can be said that correspond to the traditional stages of
the life cycle [10]:
 Sprint Planning – represents a meeting that lasts a

maximum one day and very often shorter at which
tasks from the so–called Product Backlog are ordered
by priority from the highest to the lowest. The so–
called Product Backlog represents the place where
the functionalities are defined by the product owner.
In this activity not all stakeholders are involved, and it
is estimated what needs to be done for these tasks
and how many of them can be done during the
engineering work.

 Sprint – is a time–limited period, from 2 to 4 weeks,
in which tasks taken from the Sprint Backlog are
executed. In short, these tasks are coded, tested,
integrated and documented. The goal of this agile
methodology is that at the end of each sprint,
functionalities have been developed that can go into
production.

 Daily Sprint Meeting – is held every working day at
the same time and lasts a maximum 15 minutes. Any
deficiencies or obstacles in the system development
process or engineering practices are sought,
identified and removed to improve the process.

 Sprint Review – the Scrum development team and
the Scrum Master present the results of the sprint, i.e.
the work product increment presents to the product

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XV [2022] | Fascicule 4 [October – December]

98 | F a s c i c u l e 4

owner, customers and users. Participants evaluate
the product increment and decide on the next
activities. The preview can even change the direction
of the system being built.

 Sprint Retrospective Meeting – is a meeting where
the team and the Scrum Master answer the
questions: What was good in the last sprint? What
was not good in the last sprint? What to do to work
better? After that, the new cycle starts again with a
new sprint planning.

≡ The project closure phase occurs when the user
requirements are met and the required software goals
are achieved based on the dialogue between the
product owner and the team. The latest version of the
product is ready for "release" and distribution, and the
user documentation is being completed [2] [10].

The advantages of the SCRUM method are as follows [2]:
≡ The software product is divided into a smaller set of

manageable and understandable components shared by
teams resulting in increased communication and shared
knowledge.

≡ Transparency – the development team has visibility into
everything, including communication and feedback from
product owners through the various meetings held
throughout the development process.

≡ Self–organization – all teams share responsibilities.
≡ Self–retrospective – provides a tool to self–assess goals

achieved against those needed after each iteration or
sprint, increasing productivity through continuous
testing.

≡ Simple process.
≡ Ignoring any change in sprint duration by prohibiting the

addition of any functionality to the sprint, allowing the
team to finish their current in–progress functionality.

The disadvantages of the Scrum method are as follows [2]:
≡ Violation of responsibility may occur, since there are no

precisely defined responsibilities for each team member.
≡ SCRUM does not prescribe any specific practices, work

methods or any guidelines on engineering practices.
 Feature driven development (FDD) method
This method manages short incremental iterations that lead
to functional software. The basis of the FDD method is the
management of software development based on a list of
required characteristics of business needs. The FDD method
is a highly adaptive software development method that can
account for late changes in software requirements. The main
focus of the FDD method is the delivery of high–quality
outputs during all phases of the development process [2] [9].
The life cycle of the FDD method contains five sequential
processes that are performed incrementally and iteratively,
and in this way the final software is delivered. The listed
steps are [9] [11]:
≡ Development of the overall model: In this step all team

members and experts define the required context and
scope of the overall project. Different teams and experts

can generate many models, which are then reviewed and
the optimal model is selected based on the
requirements.

≡ Creation of a list of characteristics: based on the model
and the required documentation an overall list of
characteristics is created, i.e. a specification for the
software. A list of characteristics is created, which is
grouped into sets by subject areas.

≡ Planning by characteristics: a high–level plan is created
based on a previously approved list of characteristics. The
plan is created as an order based on the client's priorities
and depending on the characteristics. The master
developer assigns characteristics to a specific developer
called the class owner.

≡ Design by characteristics: is an iterative step where each
iteration can last up to two weeks. The master developer
and the class owner create a package project for each
class with sequence diagrams. Package design and
diagrams are reviewed before approval.

≡ Build by Features: Designs are implemented, after which
the code will be reviewed and tested. This is also an
iterative step like design by features. After all the
iterations are done, the developed features will be
published in the main version, then a new set of features
is launched, and so on.

The FDD model has certain advantages which can be
summarized as [9]:
≡ FDD is a highly adaptable method that can take into

account late changes in client requirements.
≡ Delivers high quality results after each stage.
≡ The results of each iteration can be delivered within one

to four weeks which helps as we can have quick
feedback from clients.

However, there are certain limitations and disadvantages
when using the FDD model, such as [9]:
≡ There are no guidelines on requirements gathering,

analysis and risk management.
≡ The FDD model requires an expert team with a high level

of design and modelling skills.
≡ The FDD model does not take into account issues of

project criticality.
OVERVIEW OF AGILE METHODS AND DISCUSSION
Agile methods are essentially iteratively incremental
methods. Iterative nature is achieved by using user feedback
with which a certain functionality is “polished” until the
moment it meets user requirements. Small software releases
are given always which is also iterative nature. The first
release of software is essentially software with a minimum
number of functionalities that it can work with. In this way, a
quick response to the customer is offered, the first deliveries
are in weeks, not in months.
The project always has demonstrative results – the final
version of each iteration is usable software, i.e. each
subsequent release adds some new functionality to the
software. Due to its approach where users together with the

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XIV [2022] | Fascicule 4 [October – December]

99 | F a s c i c u l e 4

development team choose which functionalities have
higher priority, and incremental and iterative nature, this
approach is adaptive and customer–oriented, not the
development process–oriented. The agile methods that
have been processed are suitable for small to medium–sized
projects because agile methods also prefer small to
medium–sized teams of highly trained professionals [5]. Due
to its informal nature, documentation is weak and often not
even created. Due to adaptability, there are no long–term
plans. It can be said that there are only short–term plans. In
agile teams there are so–called self–organizing teams that,
through cooperation, communication and leadership,
achieve set goals as opposed to the command and control
which could be found in the traditional approach [11].
For large, long–life systems developed by a software
company for an external client, using an agile approach
presents a number of problems. The informality of agile
development is incompatible with the legal approach to
defining contracts that is commonly used in large
companies. When a system user uses an external
organization for system development, a software
development contract is concluded between them. A
software requirements document is usually part of that
contract between the customer and the vendor. Because
requirements and code development are intertwined,
fundamental to agile methods, there is no definitive
requirements document that can be included in the
contract.
Agile methods are best suited for new software
development, not software maintenance. However, most
software costs in large companies come from maintaining
their existing software systems. If maintenance involves
adapting and changing systems in response to new
business requirements, there is no clear consensus on the
suitability of agile methods for software maintenance. Three
types of problems can occur, especially with maintenance
[12]:
≡ Lack of product documentation – agile methods in most

cases do not care so much about documentation. The
collection of requests is conducted informally and
gradually. Shorter meetings and face–to–face
communication are also preferred. Therefore, there is no
coherent document of requirements, unlike traditional
methods. This further leads to the problem of how to
subsequently maintain and upgrade the system.
However, this is a big problem if the continuity of the
development team cannot be ensured.

≡ Keeping customers involved – initially the customer's
representatives in the development team will be fully
engaged. But as time goes on, their interest is lost. Thus,
there will have to be adjustments and changes to try to
get interest back.

≡ Development team continuity – a fundamental aspect of
agile methods is that team members know the system
without having to consult the documentation. If the

members of this team leave, then the knowledge about
the system is also lost. New members who come to the
team can have great difficulties while understanding this
knowledge of the system. In addition, programmers
prefer to develop new software rather than maintain
existing ones. Therefore, even when the intention is to
keep the development team together, people leave if
they are assigned maintenance tasks.

As mentioned before, agile methods are not very suitable for
building large systems. That is why it is necessary to perform
the so–called scaling agile methods. The fundamental
purpose of scaling agile methods is their integration with a
planning approach. To solve these problems, most large
“agile” software development projects combine practices
from plan–driven and agile approaches [12].
Recently, with the arrival of internet of things – IoT, a wide
range of devices are integrated into software systems, large
amounts of data become available for analysis, virtual reality
systems are developed, and therefore there are increasing
expectations of intelligent solutions. These new
technologies have completely renewed interest and
revealed new possibilities in exploring the full potential of
both artificial intelligence and user interface. Because of this,
a strong role of agile software development in the
emergence of new technologies is predicted [13].
CONCLUSIONS
Certainly, agile methods represent an unstoppable trend in
software development. As stated, they are very successful in
the realization of small to medium software projects, with
small teams. They have successfully responded to the
changes that and have enabled software engineers to
deliver quality software that meets user requirements.
Agile methods follow the presented agile model. The agile
model is valid for all agile methods that are iteratively
incremental by its nature. This very nature ensures success of
agile methods in the fight against changes in requirements
and the release of better software versions.
There is great discussion about their performance on large
projects in terms of documentation, consistency of the team
as well as the size of the team itself. Furthermore, teams
must primarily be in the same locations due to the informal
nature of the agile process, which leads to problems with
distributed teams. Of course, large systems are also long–
lived, so they must have maintenance as well as upgrades.
Maintenance and upgrading are processes that require the
existence of documentation. Agile methods do not really
focus on formal documentation, even proponents of agile
methods say that documentation is unnecessary, because
documentation is often not updated and is therefore
worthless. If there is no continuity of the team, and if there is
no documentation, the big question is how such software
systems could be maintained and upgraded. Because of
these problems, agile methods are scaled, i.e. there is a
process when the practices of planning and agile methods
are combined to a certain extent.

ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering
Tome XV [2022] | Fascicule 4 [October – December]

100 | F a s c i c u l e 4

Since the agile approach has fully justified its existence in
the struggle with continuous changes and the production of
high–quality software, it will certainly find its place in the
future.
Note: This paper was presented at International Conference on Applied Sciences –
ICAS2022, organized by University Politehnica Timisoara, Faculty of Engineering
Hunedoara (ROMANIA) and University of Banja Luka, Faculty of Mechanical
Engineering Banja Luka (BOSNIA & HERZEGOVINA), in May 25–28, 2022, in Banja
Luka (BOSNIA & HERZEGOVINA)
References
[1] Braude, E. J., & Bernstein, M. E. 2016 Software engineering: modern

approaches, Second Edition, Waveland Press, Inc., Illinois, USA
[2] Alsaqqa S., Sawalha S., Hiba A. N. 2020: Agile Software Development:

Methodologies and Trends, International Journal of Interactive Mobile
Technologies – Vol. 14 NO. 11

[3] Manifesto for Agile Softvware Development, https://agilemanifesto.org
[4] Isaias P., Issa T. 2015: High Level Models and Methodologies for Information

Systems, Springer Science+Business Media, New York, USA
[5] Džanić A., Dujmović D. 2011: Razvoj aplikacija korištenjem agilne metodologije

Extreme programming – xp, 8th International Scientific Conference on
Production Engineering RIM 2011, Velika Kladuša, BiH, September 29 –October
1, pp 401 – 407

[6] Mnkandla E., and Dwolatzky B. 2004: A survey of agile methodologies, The
transactions of the SA institute of electrical engineers, Vol. 95 NO. 4

[7] Beck K. 2000: Extreme programming explained: embrace change, Addison–
Wesley Professional, USA.

[8] Abrahamsson P., Salo O., Ronkainen J. and Warsta J. 2002: Agile software
development methods: Review and analysis, VTT publ., Finland.

[9] Anwer F., Aftab S., Shah S. S. M., Waheed U. 2017: Comparative Analysis of
Two Popular Agile Process Models: Extreme Programming and Scrum,
International Journal of Computer Science and Telecommunications, Volume 8,
Issue 2

[10] Schwaber K. 2004: Agile Project Management with Scrum, Microsoft Press,
[11] Zaimović T., Kozić M., Efendić A., Džanić A. 2021: Self – Organizing Teams in

Software Development – Myth or Reality, TEM Journal. Volume 10, Issue 4,
pages 1565–1571

[12] Sommerville I. 2016: Software Engineering, Tenth Edition, Pearson Education,
Inc

[13] Hoda, R., Salleh, N., & Grundy, J. (2018). The rise and evolution of agile
software development. IEEE Software, 35(5), 58–63

ISSN: 2067–3809

copyright © University POLITEHNICA Timisoara,
Faculty of Engineering Hunedoara,

5, Revolutiei, 331128, Hunedoara, ROMANIA
http://acta.fih.upt.ro

