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Abstract: An endeavor has been made to study the performance of a ferrofluid based squeeze film in circular cylinder near a plane resorting to Shliomis model, considering 
slip velocity. The stochastic model of Christenson and Tonder has been brought in here to evaluate the effect of surface roughness. The associated stochastically averaged 
Reynolds type equation is solved to obtain the pressure distribution. Then load bearing capacity has been calculated. The results show that Shliomis model based ferrofluid 
lubrication is relatively better as compared to the Neuringer– Rosensweig model for magnetic fluid lubrication of this type of bearing system, even if the slip is higher. The 
adverse effect of roughness can be reduced considerably at least in the case of negatively skewed roughness with a suitable choice of curvature parameters. It is observed that 
this type of bearing system supports some amount of load even when there is no flow, unlike the case of conventional lubricants. Some of the results presented here establish 
that the adverse effect of slip velocity can be minimized with suitable magnetic strength, irrespective of the fact that the roughness induces adverse effect. 
Keywords: circular cylinder, squeeze film, roughness, slip velocity, magnetic fluid, load bearing capacity, shliomis model 
 
 
INTRODUCTION  
It is recorded that hydraulic dampers, gears, braking units, 
synovial joints, and skeletal bearing use for a purpose of 
squeeze film mechanism. Generally, an electrically 
conducting fluid with high thermal and electrical 
conductivity is applied as a lubricant for squeeze film to 
work under such extreme circumstances. Also, an exploit 
of external magnetic field then advances the performance 
of lubrication. 
Neuringer and Rosensweig [1964] proposed a quite 
simple model where the effect of magnetic body force 
was measured under the supposition of magnetization 
vector being parallel to the magnetic field vector. 
However, Shliomis [1972] consigned on a different 
formulation. He analyzed that the magnetic particles in 
the fluid had Brownian motion and their rotation affected 
the motion of magnetic fluids. Thus, Shliomis promoted 
the equation of motion for ferrofluids by considering 
internal angular momentum by cause of the self– rotation 
of particles. After that many researchers (Kumar et al. 
[1992], Singh and Gupta [2012], Patel and Deheri [2012], 
Lin et al. [2012], Lin [2013], Patel and Deheri [2013], Patel 
and Deheri [2014], Patel and Deheri [2014]) dealt with the 
model of Shliomis to examine the performance of 
different bearing’s characteristics. All the above 
investigations analyze the steady state characteristics of 
the bearings lubricated with magnetic fluids, resorting to 
the flow model estimated by Shliomis. 

The review of Shliomis [1974] discussed briefly the 
methods of preparation and stability problems of 
magnetic colloids. This review paper summarized the 
results of theoretical and experimental investigations of 
the effect of a magnetic field on the equilibrium 
conditions and on the character of the motion of the 
suspensions. Consideration was given to various effects 
caused by rotation of the particle, anisotropy of the 
viscosity and of the magnetic susceptibility, entrainment 
of the suspension by a rotating field and dependence of 
the kinetic coefficients on the field intensity. 
Many investigations have been made regarding Circular 
cylinder (Bearman and Zdravkovich [1978], Zdravkovich 
[1985], Kawamura et al. [1986], Trahan et al. [1999], Price 
et al. [2002], Dipankar and Sengupta [2005], Lin et al. 
[2013], Patel and Deheri [2016]). 
Stochastic model of Tzeng and Saibel [1967] was 
developed by Christensen and Tonder [[1969a, 1969b, 
1970] to study the effect of surface roughness. Various 
techniques were deployed to measure the roughness 
effect. The effect of roughness has been studied in 
various squeeze film bearing systems (Tseng and Seibel 
[1967], Kawamura et al. [1986], Deheri et al. [2005], 
Abhangi and Deheri [2012], Patel et al. [2019]). 
Beavers and Joseph [1967] constructed a simple theory to 
replace the effect on the boundary layer, with a slip 
velocity proportional to the exterior velocity gradient. The 
result obtained from this theory was found to be in good 
agreement with the experimental results. Various squeeze 
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film bearing systems have been studied considering the 
effect of slip velocity (Wu [1972], Sparrow et al. [1972], 
Prakash and Vij [1976], Patel [1980], Thakkar et al. [2008], 
Patel and Deheri [2011], Patel and Deheri [2013], Patel and 
Deheri [2014 a], Patel and Deheri [2014 b], Patel and 
Deheri [2014 c], Barik et al. [2016], Acharya et al. [2017], 
Patel and Patel [2020], Patel et al. [2022]). 
The effect of porosity has been examined in various 
squeeze film bearing systems (Wu [1971], Prajapati [1992], 
Bhat and Deheri [1993], Patel and Deheri[2003], Deheri 
and Patel [2006], Patel et al. [2011], Naduvinamani et al. 
[2012], Shimpi and Deheri[(2013], Patel and Deheri [2014], 
Shimpi and Deheri [2015], Patel et al. [2018], Shah [2022]). 
Patel and Deheri [2016] considered combined effect of 
slip velocity and transverse surface roughness on the 
performance of a squeeze film for a circular cylinder near 
a plane. Therefore, in the present article it has been 
mooted to study the combine effect of slip velocity and 
transverse surface roughness on the Shliomis model 
based magnetic fluid lubrication of a squeeze film for 
circular cylinder near a plane. 
ANALYSIS 
The following figure presents the bearing configuration.  

 
Figure 1. A Cylinder Near a plane 

Majumdar informs that the Reynolds equation concern in 
an isoviscous incompressible fluid is given by 

∂
∂x
�h3

∂p
∂x
� +

∂
∂z
�h3

∂p
∂z
� = −12 ηaV             (1) 

where V is the squeeze velocity −dh
dt

  and ηa = η(1 + τ) is 

the viscosity of the lubricant. 
The length of the cylinder is assumed to be large as 
compared to the radius of the cylinder, so that the side 
leakage can be neglected. Equation (1), then reduced as 
to 

d
dx
�h3

dp
dx
� = −12 η(1 + τ)V                   (2) 

The film thickness h is determine by the relation  

h = h0 + R −�R2 − x2 
which approximately equals  

h0 +
1
2

x2

R
 

considering the series expansion. 
Following Christensen and Tonder (1970), the thickness 
h(x) of the lubricant film is considered to be  

h(x) = h�(x) + hs                                   (3) 
Here, h�  is the mean film thickness and hs is the deviation 
from the mean film thickness characterizing the random 
roughness of the bearing surfaces. hs is assumed to be 
stochastic in nature and governed by the probability 
density function F(hs), which is defined by   

F(hs) = �
32
35c�

1−
hs

2

c2 �
3

   ;−c ≤ hs ≤ c

0                          ; otherwise
        (4) 

The following relationships decide the mean α,the 
standard deviation σ and the measure of 
symmetryεrespectively, while Estands for the expected 
value define by equation (6). 

α = E(hs); σ2 = E[(hs − α)2];   ε = E[(hs − α)3]  (5) 

E(R) = � R
c

−c
F(hs)dhs                     (6) 

The details can be seen from Christensen and Tonder 
[1969(a),1969(b), 1970]. In order to describe the steady 
flow of magnetic fluids in the presence of slowly changing 
magnetic fields a mathematical model was proposed by 
Neuringer–Rosensweig in1964. This model and related 
aspects has been widely discussed in Bhat [2003]. 
Christensen and Tonder [1969(a), 1969(b), 1970] 
augmented the method of Tzeng and Seibel [1967] and 
described the surface roughness in terms of a random 
variable having non zero mean, variance and skewness. 
Using the model of Christensen and Tonder and the 
procedure given in Gupta and Deheri, equation (2) 
transform to 

d
dx
�g(h)

dp
dx
� = −12 η(1 + τ)V                 (7) 

where 
g(h) = h3 + 4(σ2 + α2)h + 2α2h + 2α3 + 3σ2α+ ε 

It is found that the role of standard deviation is much 
more as compared to the other two parameters and 
therefore one gets  

g(h) ≅ h3 + 4σ2h 
Lastly, making use of (Beavers and Joseph, 1967) slip 
model one arrives at the stochastically averaged 
Reynolds’ type equation, governing the film pressure, in 
dimensionless form as 

d
dx
��

4 + S�
2 + S�

� �h�3 + 4σ�2h��
dP
dx
� = −12(1 + τ)  (8) 

wherein the dimensionless quantities are  

S� = sh� , P =
ph3

ηV R
,σ� =

σ
h

 

The non–dimensional boundary conditions associated 
with the bearing system are  

dP
dx�

= 0 at x� = 0                                 (9) 
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where 

x� =
x
R

 

Solving equation (8) with the aid of boundary conditions 
(9) one gets the expression for non–dimensional pressure 
distribution: 

P� = −
3(1 + τ)

�4+S
�

2+S�
� σ�2

log �
h�

�h�2 + 4σ�2
�               (10)  

Then, the load carrying capacity of the bearing system in 
non–dimensional form is found to be  

W� =
(1 + τ)

�4+S
�
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where W� = h0
3 w

ηVRLC0
 

L being the length of the bearing. 
RESULTS AND DISCUSSION 
The magnetization enhances viscosity of the lubricant, 
which results in increased load bearing capacity. 
Mathematically also this can be seen clearly as the 
expression (10) is linear with respect to τ. The sharp 
increase in load carrying capacity can be seen from figures 
2–3. 

 
Figure 2. Variation of Load carrying capacity with respect to τ and C0/h0. 

 
Figure 3. Variation of Load carrying capacity with respect to τ and  h0/R . 

The profile of load carrying capacity with respect to the 
standard deviation presented in the Figures 4–6 asserts 
the load carrying capacity gets lowered. But, the influence 
of h0/R on the variation of load carrying capacity with 
respect to σ �stays nominal. 

 
Figure 4. Variation of Load carrying capacity with respect to σ� and C0/h0. 

In fact the effect of h0/R on the load bearing capacity 
with respect to standard deviation is almost negligible. At 
the same time the initial values of C0/h0 registers a 
negligible effect. 

 
Figure 5. Variation of Load carrying capacity with respect to σ� and h0/R. 

 
Figure 6. Variation of Load carrying capacity with respect to σ� and τ. 

Lastly, it is observed from Figures 7–10 that for a better 
performance, the slip is required to be kept at low level. 
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Figure 7. Variation of Load carrying capacity with respect to s̅ and C0/h0. 

 
Figure 8. Variation of Load carrying capacity with respect to s̅ and h0/R. 

 
Figure 9. Variation of Load carrying capacity with respect to s̅ and τ. 

 
Figure 10. Variation of Load carrying capacity with respect to s̅ and σ�. 

CONCLUSION 
This investigation opines that the Shliomis model is 
relatively suitable for this type of bearing system in 
comparison with the Neuringer–Rosensweig model. The 
graphical results mandate that the roughness–slip need to 
be given priority while designing the system, even if the 
slip is at reduced level. It is seen that some amount of 
load remains present in the absence of fluid flow, which 
does not happen in conventional lubricant. 
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