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Abstract: This paper presents the findings of a probabilistic evaluation of a doubly symmetric I–steel beam's bending, shear, and deflection limit states.  The design adhered 
to BS 5950, Part 1, 2000. Failure equations for flexure, shear, and deflection were derived, while random variable probabilistic models were sourced from the literature. 
Optimization using the First–Order Reliability Method (FORM) yielded design points, reliability indices, and sensitivity analyses. The results revealed that the reliability index 
decreased as beam span increased, with negative indices observed at a load ratio of 1.0 and beam span of 8.5m. Moreover, increasing the beam span to an overall depth ratio 
above 42 compromised reliability. The design achieved material savings in the plastic section modulus for a target reliability index of 3.0 but increased the modulus for a target 
index of 3.80 over a 50–year period. The design proved critical in bending, safe in deflection, and satisfactory in shear. 
Keywords: Failure analysis, sensitivity analysis, reliability level 
 
 
INTRODUCTION 
In recent times, the Nigerian populace has been 
witness to an unprecedented and alarming rise 
in the collapse of building structures, resulting in 
the destruction of properties worth billions of 
naira. This distressing trend necessitates the 
implementation of reliability analysis for structures 
or their components at every stage of their 
service lives, rather than adopting a passive 
approach and observing their eventual collapse 
[1]. According to the esteemed scholars Mosley 
and Bungey [2], engineered structures must fulfill 
the requirements of both the ultimate and 
serviceability limit states. The strength of any 
engineered structure inevitably undergoes 
degradation over time, making condition 
assessment of utmost importance [3–4]. 
 It is imperative to acknowledge that the design 
of structures or structural members based solely 
on codes cannot guarantee absolute safety, as 
the design may prove inadequate due to poor 
estimation of loading and may even be 
uneconomical due to an overestimation of 
loads. The root cause of poor loading estimation 
lies in the inherent variability of the design 
parameters employed in the design equations. 
The presence of variability in these design 
parameters renders it exceedingly challenging 
to accurately predict the safety of engineered 
structures and cost implications during the 
design phase [5]. Given the catastrophic 
consequences that result from structural failure, it 
is essential for structural engineers to intervene 
promptly at every stage of a structure's service 
life, in order to avert the devastating effects that 
failure and subsequent collapse can inflict. 

The implementation of a probabilistic framework 
has proven immensely beneficial in the condition 
assessment of various civil engineering facilities, 
as it effectively addresses the uncertainties 
associated with design parameters [6]. In light of 
this, the present study aims to conduct a 
probabilistic assessment of a doubly symmetric I–
steel beam, focusing on the limit state of 
bending, shear, and deflection, respectively. To 
achieve this objective, the First–Order reliability 
method was employed and a bespoke MATLAB 
code was developed, utilizing the derived failure 
functions. This code enables estimation of the 
reliability indices for different values of the 
random variables, thereby facilitating an 
investigation into the impact of these variables 
on the beam's reliability levels. 
LITERATURE REVIEW 
Esmaeil, et al. [7] conducted an extensive 
investigation into the reliability index, with a 
specific focus on optimizing self–centering 
structures to attain the minimum weight possible 
by utilizing metaheuristic algorithms. This study 
encompassed not only linear but also nonlinear 
reliability problems, thereby providing a 
comprehensive analysis. The findings of their 
research unveiled significant results, indicating a 
noteworthy decrease in weight of 36%, 30%, and 
32% for buildings with 10, 15, and 20 storeys, 
respectively, when uncertainties were not 
accounted for. However, when uncertainties 
were factored in, a remarkable weight reduction 
of 23% was achieved for the same buildings. This 
implies that the consideration of uncertainties 
can lead to an increase in failure probability of 
up to 23%. In addition, the authors made an 
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interesting observation regarding the 
performance of the charged system search and 
colliding bodies optimization algorithms, noting 
their effectiveness in the context of this study. 
Consequently, it can be concluded that the 
incorporation of a reliability index, while leading 
to the construction of heavier structures, 
ultimately enhances the overall safety of these 
structures. 
Junho [8] extensively examined the concept of 
“Reliability–Based Design Optimization (RBDO) of 
Structures Using Complex–Step Approximation 
with Sensitivity Analysis”. In the study, he 
conducted a thorough examination of the 
application of reliability analysis in the field of 
structural design. Through the meticulous 
experimentation and examination of various 
structural optimization problems, encompassing 
a wide spectrum of statistical variations, he 
successfully showcased the potential of this 
method in achieving optimal performance while 
adhering to highly precise probabilistic 
constraints. By employing complex–step 
approximation, the accuracy of RBDO was 
significantly enhanced, leading to a notable 
improvement in the overall performance benefits 
associated with structural optimization. 
Jerez et al. [9] in their studies conducted a 
comprehensive survey to explore the most 
recent advancements in reliability–based design 
optimization of structures subjected to stochastic 
excitation. In their study, they examined various 
approaches, including the search–based 
technique, sequential optimization approach, 
and scheme–based approach. An intriguing 
observation made by the authors was the 
significant influence of computational aspects in 
successfully addressing optimization problems. 
Furthermore, their comprehensive overview 
suggests that the methods employed for 
achieving optimal design in stochastic structural 
dynamics are no longer confined to academic 
scenarios but can also serve as valuable tools in 
solving a wide range of engineering design 
problems. 
The investigation conducted by [10] focused on 
the examination of reliability analysis and design 
optimization for nonlinear structures. In order to 
accomplish this, they employed the Kriging 
based method and the First–order reliability 
method (FORM). The Kriging based method, 
showed greater levels of efficiency and 
accuracy when compared to the FORM based 
method and the Monte Carlo Simulation (MCS) 
method. Interestingly, the Kriging based method 

did not require the determination of the 
response sensitivity, thereby enhancing its 
adaptability for various scenarios. 
An examination of the reliability analysis of steel 
rack frames using the Direct Design Method was 
carried out by [11]. Furthermore, they developed 
curves that illustrate the relationship between the 
system reliability index (β) and the system 
resistance factors (ϕs) for these steel rack frames 
and compared their findings to those of a 
traditional design approach based on elastic 
analysis. To carry out their assessment, the 
researchers employed a combination of the 
DDM, a formulation of the limit state function, 
and probabilistic modelling through Monte Carlo 
simulation. This allowed them to thoroughly 
investigate the reliability of steel rack frames and 
derive the system reliability indices.  
 The results they obtained indicated that the 
utilisation of the DDM offers more advantages 
than the traditional design approach based on 
elastic analysis. Specifically, when the system 
reliability indices fell within the range of ≤3, they 
found that similar structural reliability was 
achieved for both unweighted and weighted 
unit pallet loading. This observation 
demonstrated the consistency between the load 
combination factors and their corresponding 
coefficients of variation. Overall, the researchers 
concluded that incorporating sectional 
imperfections in the analysis model did not yield 
any discernible benefits in terms of the adopted 
system resistance factor. 
DEVELOPMENT OF LIMIT STATE FUNCTIONS 
A limit state function is a representation of a 
specific failure mode and it establishes a 
connection between various parameters. Its 
development is a fundamental aspect of 
structural engineering and plays a vital role in the 
design and construction of safe and efficient 
structures. In this study, the failure functions were 
developed according to the provisions of [12] for 
the design of steel structures.  
▓ Bending limit state 
The limit state of bending happens when the 
bending moments or tensile stresses are more 
than what is necessary for the structure to be 
safe and functional before failing. Equation 1 
illustrates its function as follows: 
G(X) = PySx − 0.125 ∗ 1.6 ∗ q ∗k (0.875α+ 1) ∗ L2 (1) 
▓ Shear limit state 
Shear forces that are too great for the structure's 
safety and serviceability standards before failure 
cause the shear limit condition. The shear 
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resistance of the I–section according to [12] is 
given in equation 2 as:  

Pv = 0.60PyAv                        (2)  

where
 

Av = Dt                         (3)       
The maximum shear force is given by: 

Fmax = 5wL
8

= 0.625 ∗ 1.6qk(0.875α + 1) ∗ L      (4)  
The failure function in shear is generated by 
subtracting equation 4 from equation 2. This is 
given as shown in equation 5 and equation 6: 

G(X) = 0.60PyDt − 0.625 ∗ 1.6 ∗ q ∗k (0.875α + 1) ∗ L  (5) 
G(X) = 0.60Pyt − 0.625 ∗ 1.6 ∗ q ∗k (0.875α + 1) ∗ L

D
   (6)   

Let, L
D

= λ  
 

Equation 6 now becomes: 
G(X) = 0.60Pyt− 0.625 ∗ 1.6 ∗ q ∗k (0.875α+ 1) ∗ λ (7)

 where kg = Characteristic dead load; kq  = 
Characteristic live load; yP = Bending strength of 
steel 
Equation 7 is the failure function in shear of the 
doubly symmetrical I–steel beam. 
▓ Deflection limit state 
The deflection limit state is a conception that 
focuses on the gravity of keeping the deflection 
of a structural member below a certain 
boundary to ensure the structure's performance 
and safety, alleviating the risk of failure, and 
maintaining stability, functionality, and durability. 
The allowable deflection is shown in equation 8 
as: 

δall = L
360

   (8) 
Eqution 9 presents the maximum value of 
deflection for a uniformly loaded beam as: 

 δmax = 0.0052wL4

EI
           (9) 

The limit state function in deflection is developed 
by subtracting Eq. (9) from Eq. (8) and is given in 
Eq. (10) as: 

G(X) = L
360

− 0.0052wL4

EI
                      (10) 

Substituting the value of w from equation 4 into 
the equation 10 gives: 

G(X) = L
360

− 0.0052∗1.6∗q ∗k (0.875α+1)∗L4

EI
         (11) 

Eq. (11) is the failure function in deflection of the 
doubly symmetrical I–steel beam. 
▓ Probabilistic design of steel beam in bending 
The limit state function in bending is given by: 

G(X) = PySx − MD − ML                  (12) 
where MD and ML are induced moment due to 
dead and live loads respectively. 
Induced moment due to dead and live loads 
are given by equation 13 and equation 14 
respectively. 

MD = gkL2

8
                     (13)

 
ML = qkL2

8
   (14)

 Let: 
Py = X1; gk = X2; qk = X3

 Equuation 12 now becomes: 
G(X) = X1 ∗ Sx −

X2L2

8
− X3L2

8
  (15)

 Or 
G(X) = 8SxX1

L2
− X2 − X3        (16)

 Let the coefficient of X1 be b. Therefore, 
8Sx
L2

= b         (17)
 Eq. (16) now becomes: 

G(X) = bX1 − X2 − X3        (18) The statistics of the design parameters in 
equation 18 are used as input variables in the 
MATLAB code and the value of b corresponding 
to the target reliability index of 3.0 
recommended for beams in flexure is obtained 
by optimization. 
▓ Reliability analysis 
The design process for a doubly symmetric I–steel 
beam, subject to uncertain dead and live loads 
of 20KN/m and 10KN/m respectively, was 
conducted in accordance with the design 
specifications outlined in [12] A UB section with 
dimensions of 406*140*46Kg/m was determined 
to meet the necessary criteria for bending, 
shear, and deflection. 

 

Table 1: Probabilistic models of the basic random variables 
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1 Py N/mm2
 Normal 275 27.5 0.10 

2 qk kN/m Normal 20 5 0.25 
3 Ix mm4 Normal 475400000 23770000 0.05 
4 E N/mm2 Normal 205000 10250 0.05 
5 L mm Normal 8000 400 0.05 
6 D mm Normal 528.3 26.415 0.05 
7 Sx cm3

 Normal 2059000 102950 0.05 
8 α – Fixed Varying   
9 t mm Normal 9.6 0.48 0.05 

10 D/L – Fixed Varying – – 
11 gk kN/m Normal Varying – 0.10 

 

The characteristic live load value is kept constant 
at 20KN/m while the varying load ratio values 
considered are 0.5, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0 
and 2.25 respectively. The values of the 
characteristic dead load corresponding to the 
above load ratios are 10KN/m, 15KN/m, 20KN/m, 
25KN/m, 30KN/m, 35KN/m, 40KN/m and 45KN/m 
respectively. The deterministic design for the 
plastic section modulus of the I–beam 
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corresponding to the characteristic dead and 
live loads was carried out and the results 
obtained are compared with the results of the 
probabilistic design at target reliability indices of 
3.0 and 3.80 respectively. The probabilistic 
models for the basic random variables are 
presented in Table 1. 
▓ First Order Reliability Analysis 
The limit state function G(X) is a function of the 
basic random variables. G(X) is the  limit state 
function  such that G(X) < 0 represents unsafe 
state of a structure, G(X) > 0 represents the safe 
state of a structure and G(X) = 0 represents the 
demarcation between the safe and unsafe state 
of the structure respectively.  
Let the limit state function in the space of n–
dimensional input variables X1, X2, . . . , Xn be given 
by:  

G = g(X1, X2, . . . , Xn) = 0                (19)    
Also, 
Let the vector of the be random variables with 
second moment statistics E(X) and Cov(X, X′) be 
X = [X1, X2, . . . , Xn]′ 
The normalized random variables y1, y2, . . . , ynare 
introduced by a suitable one to one linear 
mapping X = L(y)such that y = L−1(X). The 
corresponding space of y is then defined by the 
transformation: 

X = L(y), y = L−1(X)      (20) 
Applying equation 20 maps equation 19 into: 

h(y1, y2, . . . , yn) = 0         (21) 
 Where the function h is defined by: 

 h(y) = g[L(y)]            (22) 
Equation (22) represents the failure function in 
normalized coordinate. The mean value of y is 
the origin and the projection of y on the arbitrary 
straight line through the origin is the random 
variable with the standard deviation of unity.  
The reliability index 𝛽𝛽 is the distance between the 
origin and the failure surface in the normalized 
coordinate.  It is given by:   
    β =
min��∑(y12 + y22+. . . . . +yn2) �h(y1, y2, . . . , yn)� = 0      (23) 
Equation (23) is minimized subject to the 
constraint that ( ) 0...,,, 21 =nyyyh . The design 
points on the failure surface are obtained by 
optimization. 
In First–Order reliability method, all non–normal 
random variables must first be transformed to 
their equivalent normal random variables before 
they can be used. This requires that the 
distribution function of the basic variable and the 
equivalent normal variable are equated at the 
design point as: 

Φ�xi
∗−μxi

N

σxi
N � = Fxi(xi∗)          (24) 

where Φ(⋅) = cumulative distribution function of 
the standard normal variable at the design point; 
μxiN , σxiN  = mean and standard deviation of the 
equivalent normal variable at the design point 
respectively; Fxi(xi∗) = cumulative distribution 
function of the original non–normal variables.  
The mean of the equivalent normal variable at 
the design point is given by: 

μxiN = xi∗ − Φ−1[Fxi(xi∗)]σxiN          (25) 
The distribution function of the basic variable 
and the  equivalent normal variable are equal  
at the design point:  

φ
σxi
N �

xi∗−μxi
N

σxi
N � = fxi(xi∗)                  (26) 

where φ(⋅)and fxi(xi∗) = probability distribution 
function of the equivalent standard normal and 
the original non–normal random variable 
respectively.  
Applying equation 25; 

Φ−1[Fxi(xi∗)]σxiN = xi∗ − μxiN             (27) 
Applying Equation (26), the standard deviation 
of the equivalent normal variables are given as:   

σxiN = φ �Φ−1[Fxi(xi∗)]�
fxi(xi∗)          (28) 

RESULTS AND DISCUSSION 
The results of the MATLAB program automated 
reliability analysis of a doubly symmetric I–section 
steel beam are presented in Figure 1 to Figure 6 
respectively and Table 2. 

Table 2: Values of plastic section modulus (m3) for varying load ratios obtained from 
code–based design and reliability–based design at target reliability indices of 3.0 and 

3.80 
Load Ratio 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 
BS 5950:  

Part 1 (1985) 
1472 1696 1919. 9 2143.9 2368 2591.6 2816 3040 

RBD (Beta = 3.0) 1520 1720 1920 2120 2288 2560 2768 2928 
RBD (Beta = 3.8) 1744 1960 2192 2424 2640 2880 3136 3360 

 
Figure. 1: Relationship between reliability index and beam span for varying load ratio 
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Figure 2: Relationship between reliability index and beam span for  varying load ratio 

(Shear limit state) 

 
Figure 3: Relationship between reliability index and beam span for varying load ratio 

(Deflection limit state) 

 
Figure 4:  Relationship between reliability index and beam span for varying load ratio 

(Bending, shear and deflection limit state) 
The MATLAB code employed in this study yielded 
the reliability indices for the bending, shear, and 
deflection limit states. These indices were 
determined through the utilization of the first–
order reliability method. The obtained results are 
showcased in Figure 1 to Figure 3 which 
demonstrate the relationship between the 

reliability indices and varying load ratios for each 
limit state. It is evident from the figures that an 
increase in beam span and load ratio led to a 
decrease in the reliability indices for the bending, 
shear, and deflection failure modes. This 
observation aligns with the conclusions drawn by 
[13] who found that safety levels decline with an 
increase in beam span and load ratio. 

 
Figure. 5: Relationship between reliability index and lambda at alpha = 1.0 (Shear Limit 

State) 

 
Figure 6: Relationship between load ratio and plastic section modulus values for 

deterministic and reliability based design 
Based on the data presented in Figure 1, it can 
be seen that the safety indices ranged from –
1.419 to 5.708, with an average value of 3.145. 
Similarly, Figure. 2 showcases the implied safety 
indices from 2.237 to 7.357, with an average 
value of 4.798. Furthermore, Figure 3 
demonstrates that the implied safety indices vary 
from –0.889 to 9.98, with an average value of 
4.546. Notably, Figure 1 to Figure 3 shows that the 
average values of the implied safety indices for 
shear and deflection limit states exceed the 
recommended range of the target safety index, 
which is 3.3 to 3.7, for structures with minor to 
large consequences of failure [14]. In addition, 
for beam spans beyond 8.5m and load ratios 
surpassing 1.0, the safety of the beam cannot be 
ensured as indicated by the negative values of 
the safety indices [13, 15].             
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Figure 4 illustrates the range of implied safety 
indices for the bending limit state, which extends 
from –0.582 to 4.561, with an average value of 
1.990. Similarly, for the shear limit state, the 
implied safety indices vary from 3.601 to 6.412, 
with an average value of 5.007. Additionally, the 
values of the implied safety indices for the 
deflection limit state range from 0.0399 to 8.87, 
with an average value of 4.455, as portrayed in 
Figure 4. Figure 5 depicts the correlation 
between the safety indices and the beam span–
overall depth ratio (Lamda) at a constant load 
ratio of 1.0. The data from Figure 5 reveals a 
clear decrease in the reliability index as the 
beam span–overall depth ratio increases. It is 
crucial to emphasize that exceeding a beam 
span–overall depth ratio of 42 would 
compromise the safety of the beam, as 
indicated by the negative value of the reliability 
index. These findings align with the conclusions 
drawn by [16] which underscore the threat 
posed to the beam's safety by the negative 
values of the reliability indices. Hence, when the 
load ratio is 1.0 and the beam span measures 
8.5m, it can be deduced that the design is 
crucial in terms of bending, secure in deflection, 
and satisfactory in shear. Additionally, the 
probabilistic design of the doubly symmetric 
beam was executed under the bending limit 
state, considering predefined reliability indices of 
3.0 and 3.8, correspondingly. The deterministic 
values of the plastic section modulus were 
compared with the design values based on 
reliability, yielding the outcomes displayed in 
Table 2.        
It can be clearly seen from the Table, that the 
beam's deterministic and probabilistic design 
was carried out to establish the plastic section 
modulus at various load ratios, namely 0.5, 0.75, 
1.0, 1.25, 1.5, 1.75, 2.0, and 2.5. It is apparent that 
for load ratios of 0.50 and 0.75, with a target 
reliability index of 3.0, the plastic section modulus 
experiences an increase of 3.3% and 1.42% 
correspondingly.  
At load ratio of 1.0, the values of the plastic 
section modulus are almost identical. However, 
at load ratios of 1.25, 1.5, 1.75, 2.0 and 2.25, the 
readings of the plastic section modulus reduce 
by 1.13%, 3.49%, 1.23%, 1.73% and 3.83% 
respectively. This results to savings in the quantity 
of materials of I–steel beam. As the beam was 
designed for a target reliability index of 3.80 to 
reflect the consequences of failure for 50 years 
design period, the values of the plastic section 
modulus of the beam increases by 18.5% for 0.5 

load ratio, 15.6% for 0.75 load ratio, 14.2% for 1.0 
load ratio, 13.1% for 1.25 load ratio, 11.5% for 1.5 
load ratio, 11.1% for 1.75 load ratio, 11.4% for 2.0 
load ratio and 10.5% for 2.25 load ratio 
respectively.  
CONCLUSIONS 
The findings of the probabilistic evaluation of a 
doubly symmetric I–steel beam in relation to the 
limit state of bending, shear, and deflection, as 
per the design requirements outlined in [12] have 
been presented. The reliability estimates were 
obtained using a MATLAB automated program 
developed based on the First–Order Reliability 
Method. It was observed that the reliability 
indices decreased as the load ratio and beam 
span increased for the bending, shear, and 
deflection failure modes under consideration. It is 
not advisable to exceed a beam span of 8.5m 
and a load ratio of 1.0, as these values yielded 
negative safety indices.    
When the load ratio was kept constant at 1.0, 
the reliability index decreased as the beam 
span–overall depth ratio increased. A beam 
span–overall depth ratio exceeding 42 would 
compromise the safety of the beam. The analysis 
showed that the design is critical in terms of 
bending, safe in terms of deflection, and 
satisfactory in terms of shear. The probabilistic 
design results for the plastic section modulus of 
the beam in bending, targeting a reliability index 
of 3.0 and a constant load ratio of 1.0, indicated 
material savings for the I–steel beam by 
considering different beam section choices 
based on the plastic section modulus values. 
However, when the beam was designed for a 
target reliability index of 3.80 to account for 
failure consequences over a 50–year design 
period, the values of the plastic section modulus 
of the beam increased. 
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