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Abstract: Although the greatest names in science have been grappling with one of the most complex problems for the past three centuries, the problem of turbulent viscous fluid flow has 
not been represented by a closed system of equations to this day. The attempts of Euler, Navier, Stokes, Bussinesque, Reynolds, Prandtl and others are getting in the last 50 years new support, 
such as computational fluid dynamics i.e., numerical modeling but also artificial intelligence with its tools such as deep learning and neural networks which are supposed to provide turbulence 
closure modeling. A historical overview and efforts of modern science and modern techniques are presented in this paper as well as some arising issues. 
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INTRODUCTION  
The development of fluid mechanics can be 
traced through historical data related to the 
great names of science, primarily 
mathematicians and physicists, but also 
engineers, inventors and lovers of the rich field of 
fluid studies. The first written document about 
fluid behavior was left to us 250 years B.C. by 
Archimedes entitled “On floating bodies”. 
Despite the two–millennium study of fluids, to this 
day we do not have a closed mathematical 
model that describes the turbulent flow of a 
viscous fluid. 
In 1755 Leonhard Euler (1707–1783) formed his 
famous equation for ideal fluid flow. After Euler, it 
appears that only Navier was motivated to 
formally tackle this problem and to succeed in 
solving it in 1822. He expanded Euler`s equation 
by introducing the viscous forces. Many 
investigators had put effort into solving the 
equation of motion for viscous flows as 
developed by Navier, and like him, Stokes had a 
very clear intention on the practicality of his 
efforts by confronting theory with experiments [1] 
in the 1830s and 1840s. This may be a reason why 
he and Navier became associated with the 
equation of motion for viscous flows. However, it 
would be fair to call the equation Euler–Navier–
Stokes if it is necessary to include in the name the 
contribution of Stokes which was not 
fundamental, [1]. 
The Euler equation is given as: 

dv�⃗
dt

= f⃗ −
1
ρ

gradp (1) 

where are: 
�⃗�𝑣– velocity vector,𝑓𝑓– body forces, p – pressure, ρ 
– density. 

Hence the Navier–Stokes (N–S) equations being 
an extension of Euler’s given in vector form also 
represents nonlinear partial differential 
equations: 

dv�⃗
dt

= f⃗ −
1
ρ

gradp + ν∆v�⃗ +
1
3
νgrad divv�⃗  (2) 

where ν is kinematic viscosity. The continuity 
equation which is coupled with Navier–Stokes 
equations reads: 

∂ρ
∂t

+ div(ρv�⃗ ) = ρε� (3) 
where ε� is specific yield of source or sink is also a 
partial differential equation. 
MATERIAL AND METHODS  
The aim of this paper is to present the 
development of a mathematical model that 
describes the flow of a viscous fluid, future 
tendencies and arising issues. In doing so, literary 
data were used that followed the development 
of fluid mechanics in the last two and a half 
centuries. The literature data are in abundance. 
It takes a lot of time to establish a solid path 
which can be followed through the labyrinth of 
investigations, research and experiments 
conducted by many famous and less famous 
scientists. 
In this paper the main question will be if it is 
possible to solve one of the hardest problems in 
fluid mechanics, as well as in computational 
science, the problem of turbulence modeling, or 
turbulence closure modeling using modern 
techniques of deep learning or deep neural 
networks. Also, what does the future bring in this 
field from the standpoint of an educator. 
In order to design certain objects such as 
aircraft, ships, submarines or turbine blades it is 
needed to estimate certain quantities with which 
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the fluid flow field interacts with the objects, such 
as lift or drag. The starting point in fluid dynamics 
is the Navier–Stokes equations. They are time and 
space–dependent conservation of momentum 
equations. Navier–Stokes equations together 
with continuity equation represent a set of 
nonlinear partial differential equations which can 
be solved analytically only for a certain number 
of examples for laminar fluid flow in 2D, but 
solving these equations in 3D is, even nowadays, 
if not impossible, then extremely difficult, [1]. 
Previously, engineers made further 
approximations and simplifications to the 
equation set until they had a group of equations 
that they could solve. Contemporarily, high–
speed computers have been used to solve 
approximations to equations using a variety of 
techniques, e.g., finite difference, finite volume, 
finite element, and spectral methods, [2]. 
ANALYTICAL APPROACH 
Today N–S equation represents one of the seven 
most important unsolved problems established 
by the Clay Institute of Mathematics. A 
fundamental problem in analysis is to decide 
whether such smooth, physically reasonable 
solutions exist for the Navier–Stokes equations. 
[3]. There are analytical solutions for the laminar 
fluid flow examples, but the turbulent flow is 
much more complicated. It is represented with 
Reynolds equations which are time–averaged 
Navier–Stokes equations. By doing so, an 
unknown term – Reynolds stresses is introduced. 
They represent the impact of the turbulent 
fluctuations on the mean flow. The Reynolds 
equations are partial differential equations of 
second order and of elliptical type that do 
not possess analytical solutions. In order to solve 
these equations, it is necessary to introduce not 
only time averaging but also some additional 
hypothesis which will establish a connection 
between turbulent stresses and averaged 
velocities. 
Flow over an obstacle produces turbulent 
separated structures over a wide range of scales 
with existing patterns. Large–scale structures 
(eddies, vortices) are mainly responsible for 
either drag, lift or mixing efficiency. It would be 
an extremely expensive simulation if it would 
characterize every single degree of freedom. 
Instead, a reduced order model would be 
sufficient to present how the big energy–
containing structures work together to change 
the property of interest (e.g. drag on a boundary 
layer). Kolmogorov turbulent energy cascade 

shows length scales of existing eddies or vortices 
in a turbulent flow, Figure 1. 

 
Figure 1.  Kolmogorov turbulent energy cascade 

The exact solutions of the Euler equation and 
Navier–Stokes equation are proposed by 
different authors using different methods. Among 
the most effective are Lie group theory and 
Baecklund transformation, symmetry reduction 
method [4], or transformation into the linear 
diffusion equations on a different basis [4–6]. 
Moreover, the N–S equations are solved by 
introducing some simplifications, e.g. the Cole–
Hopf transformation is applicable for an 
incompressible flow and allows reducing the 
Navier–Stokes equation to the Einstein – 
Kolmogorov equation, [7].  
Some authors [8] proposed the conversion of 
Navier–Stokes equations to a one linear diffusion 
equation based on the proposed linear velocity 
operator concept where the velocity operator is 
formulated in terms of a generalized new 
physical parameter.   
The examples of flows for which analytical 
solutions are possible to find, with certain 
restraints, are those through ducts, pipes, coaxial 
gaps, between two parallel plates, etc. [9]. 
However, analytical solutions to even the 
simplest turbulent flows do not exist, [10]. 
▓ Computational Fluid Dynamics (CFD) 
In order to calculate how the object interacts 
with the fluid, and vice versa, it is necessary to 
simulate fluid flow to estimate quantities of 
interest. One way to do that is by using 
Computational Fluid Dynamics (CFD). CFD is a 
science that, with the help of digital computers, 
produces quantitative predictions of fluid–flow 
phenomena based on the conservation laws 
(conservation of mass, momentum, and energy) 
governing fluid motion and it complements 
experimental and theoretical fluid dynamics [11]. 
CFD enables analyses of complex problems 
involving fluid–fluid, fluid–solid or fluid–gas 
interaction, minimizes the planning time and 
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saves costs of experiments. The results of CFD 
simulations are numerical solutions of the 
governing equations of fluid dynamics. 
Real flow structures might have many orders of 
magnitude of scales both in space and time and 
instead of modeling all of them which is very 
expensive for computers, it is possible to 
approximate how small scales affect the big 
energy–containing scales that are actually of the 
main interest since they are mostly responsible 
for a lift and drag. This field is called closure 
modeling.  
The turbulence modeling should enable 
avoidance simulation of a wide range of 
turbulent scales and provide closure of 
turbulence modeling. This field is rapidly 
progressing with a constant flow of results in 
literature, and recently the support of artificial 
intelligence and its tools, machine learning and 
more advanced deep neural networks, provide 
a better understanding of turbulence and the 
possibility of optimizing real fluid flow. 
▓ Direct Numerical Simulation (DNS) 
Direct Numerical Simulation (DNS) is a research 
tool of CFD; it does not provide exact solutions to 
the Navier–Stokes equations for engineering 
problems. The aim of DNS is to get a detailed, 
both in spatial and temporal scales, model of a 
flow field, e.g., flow around an airfoil, or a turbine 
blade. But typically, it is too expensive, and lasts 
too long; even with Moore's law of exponentially 
growing computer power, it will still take too 
much time to simulate the largest scale turbulent 
problems at all resolutions in space and time, not 
to mention optimization process which would 
take even more time. Because of that it is a must 
to do the turbulence modeling. 
▓ Problem of Turbulence Modeling 
One of the most demanding and intriguing 
problems of fluid mechanics is the problem of 
turbulence. The wide range of scales of time and 
space in turbulent flows demands significant 
resources, both in time and computer 
configuration to model turbulence.  
Turbulent flow is characterized with oscillatory 
behavior of physical properties; hence they can 
be represented such as averaged value plus 
fluctuation, Figure 2. 

v = v� + v′ (4) 
In addition to velocity, other turbulent flow 
properties also show oscillatory characteristics. In 
order to model a turbulent flow, it is necessary to 
approximate turbulent stresses, which are too 
demanding in time and computer power 
requirements to model.  

The engineering computation of turbulent flows 
therefore relies on simpler descriptions with 
introduction of the statistical consideration of the 
flow. 

 
Figure 2. Instantaneous velocity in turbulent flow v,  

averaged velocity v� and fluctuation v’ 
Bussinesque proposed methods for presenting 
viscous stresses, and Reynolds contributed. The 
work of Prandtl, Kolmogorov, Taylor and von 
Karman [12] was aimed to characterize 
turbulence. With the growth of computer power, 
possibilities of numerical simulations increased, 
but simplified engineering approximations 
continue to remain popular and widespread, 
[13].  
There are many approaches [14,15], but the two 
most common approaches are RANS (Reynolds 
Averaged Navier–Stokes) and LES (Large Eddy 
Simulation). The RANS approach is based on 
time–averaged Reynolds equations and requires 
closures to represent the turbulent stresses and 
scalar fluxes emerging from the averaging 
process. The discipline of turbulence modeling 
has evolved using a combination of intuition, 
asymptotic theories and empiricism, while 
constrained by practical needs such as 
numerical stability and computational efficiency, 
[13]. 
The large eddy simulation (LES) technique of 
turbulence modelling reduces the complexity of 
simulation by focusing on turbulence on larger 
length scales and larger time scales, while the 
smaller scale flow behavior can be described 
using a subgrid model. The LES technique is an 
exact method which is still computationally 
tractable, while the RANS is a less precise method 
which is more computationally efficient than LES. 
▓ Machine Learning (ML) 
Fluid mechanics, with massive amounts of data 
increasing daily, either from experiments or 
simulations, is a field with massive potential for 
machine learning, rapidly becoming an integral 
part of everyday life. 
Simply put, machine learning is building models 
from data using optimization. More precisely, 
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machine learning algorithms are a growing set of 
data–intensive optimization and regression 
techniques ideal for these types of high–
dimensional, non–linear, non–convex, and 
constrained optimizations [16]. 
The essential tasks in fluid dynamics are 
connected to reduced–order modeling, 
experimental data processing, shape 
optimization, turbulence closure modeling, and 
control [17]. Machine learning can be used for 
three main objectives: 
 to accelerate direct numerical simulations 
 to improve modeling basically in the context of LES and RANS and  
 to obtain more robust reduced order models, [18]. 
Machine learning application in fluid dynamics 
encounters many obstacles, as mentioned in 
[17]. But this is a very fast–growing field with 
constant advance which can be seen in papers 
produced recently in the field of reduced order 
modeling [19], or for detecting interface 
between turbulent and non–turbulent flow [20]. 
One of the most developed segments of ML is 
image processing. It is also an aspect of ML 
applicable to improve flow visualization, what is 
done in [21], where was conducted super–
resolution analysis of grossly under–resolved 
turbulent flow field data.  
A group of authors [22] used ML to stabilize fluid 
flow in the wake of a fluidic pinball, and in [23], 
to stabilize an open cavity flow experiment. In 
order to improve Reynolds–averaged Navier 
Stokes (RANS) turbulence models, ML is applied 
in the paper [24] using a data–driven approach. 
In [13] is presented how machine learning and 
data–driven methods are being used to tackle 
the closure problem and how machine learning 
can make a practical impact on everyday 
industrial flows.  
Optimization problems are also solved 
increasingly well with the aid of machine 
learning, and instead of using the full Navier–
Stokes equations, which are far too demanding 
in computer power and time, it is possible to 
build surrogate models with the aid of ML that 
are accurate and fast enough to use in real–time 
for feedback control. 
Another mighty tool of ML is deep neural 
networks (DNN), the dominant data mining tool 
for big data applications [25], using an artificial 
neural network with multiple layers between the 
input and output layers. 
In case of RANS modeling in [26] is presented 
how a custom deep neural network with 
additional tensor input based on prior physical 
knowledge can be improved compared with a 

generic neural network architecture that does 
not embed this invariance property. 
RESULTS AND DISCUSSION  
In the future, mechanics of fluids will take a 
central role in many fields of human activities, 
including energy sector, transportation, utility 
sector, etc. Most of these activities will be 
enabled by advanced fluid mechanics models 
and controls, and these tasks can generally be 
written as challenging optimization problems. 
These optimizations are nonlinear, non–convex, 
multi–scale, very high dimensional, and that is 
exactly where machine learning is significantly 
advancing. 
In the 21st Century, computational methods and 
software tools are put on another level. An 
increase in computer power has made 
engineering and scientific computations more 
available and economically viable.  
Modeling has become a mainstream step in 
engineering analysis and design of products, 
processes, and systems. However, the required 
training that engineering and science students 
often receive is not at the adequate level. 
Therefore, they may not have all the 
background training required to use software 
packages. This has created a challenge for 
industry to have trained professionals who can 
create “reliable” models and fully utilize 
commercially available software packages.  
On the other hand, students, engineers, and 
scientists may not have the luxury of time and 
training to learn all the necessary technical 
subjects like physics, mathematical modeling, 
numerical methods, and programming 
languages.  
Therefore, some arising thoughts and questions 
are: 
 The theory is chasing the praxis, but the 

experiment remains the primary tool in fluid 
flow analysis, even though CFD has gone a 
long way with a lot of data and is constantly 
advancing. But, we need both experiment 
and computation [27]. 

 There is a transition from first principles to 
data–driven techniques. 

 The abundance of data from experimental 
research and simulations provided asolid base 
for machine learning. Application of deep 
learning and neural networks provided 
additional advancement in closure problems. 
However, the physical involvement is logical 
and should be prioritized overthe 
mathematical approach. 
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 How should the students be thought?There 
can be two kinds of schools: one deep and 
broad, and the other will treat the application 
of CFD and ML as black box. That would lead 
to two kinds of engineers: engineers with wide 
knowledge, capable of thinking broadly and 
capable of introducing new concepts, and 
engineers who will specialize in a narrow field, 
with less ability to provide some general 
solutions. The first approach requires longer 
education, more devotion and more 
abundant resources. 

CONCLUSION 
Under the umbrella of authority such as Euler, 
Navier, Stokes, Reynolds, Prandtl, etc., it is difficult 
to stand out and deviate from the established 
path. And that is exactly the step that should be 
taken: to step away from the problem and try to 
look at it from another angle, by possible 
expansion of the system boundaries in order to, 
at least, get nearer to the solution of the 
turbulence closure problem.  
The existing transition from first principles (such as 
the Navier–Stokes equation) to data–driven 
techniques is exactly such a step which leads us 
to the solution using another way: ML. What is 
important is that machine learning should not 
become a black box and must be connected to 
physically interpretable and generalizable 
models which are clear, trustworthy, and 
repeatable under different circumstances and 
can be interacted with. The most important issue 
is the future education of engineering and 
science students and to which extent it should 
be provided to them. 
Educational institutions must embrace a 
dynamic approach to equip the next generation 
of engineers with the skills and mindset needed 
to tackle these complex problems. This involves 
fostering a deep understanding of both 
traditional principles and cutting–edge 
techniques like machine learning. Thus, the 
paramount challenge ahead is to seamlessly 
integrate machine learning while reshaping the 
education of future engineers. 
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