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Abstract: WebAssembly (Wasm) has rapidly gained adoption as a powerful, low–level assembly language designed to enable near–native performance in web browsers, alongside 
secure execution in other environments such as IoT and edge computing. Despite its secure–by–design nature, WebAssembly is vulnerable to several types of attacks, including 
memory safety issues, side–channel attacks, and code injection. These vulnerabilities pose significant threats to applications relying on WebAssembly, particularly in performance–
sensitive and security–critical environments. This study examines existing research on static, dynamic, and hybrid analysis approaches for discovering vulnerabilities in WebAssembly 
binaries. By categorizing state–of–the–art methods, are highlighted both their contributions and limitations. This study aims to foster a unified framework for vulnerability discovery 
that aligns with the needs of both WebAssembly applications and the broader cybersecurity landscape. 
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INTRODUCTION 
A coalition of companies, including Mozilla, 
Microsoft, Apple, and Google, created 
WebAssembly (or “Wasm” for short) in 2015 to 
address the shortcomings of traditional web 
technologies. WebAssembly has emerged as a 
revolutionary technology, designed to serve as a 
portable compilation target for high–level 
languages, primarily used to improve 
performance in web applications and expand 
into other domains like the Internet of Things (IoT), 
blockchain, and edge computing [1–4]. It has 
also been recognized as an official standard by 
the World Wide Web Consortium (W3C).  
Since its inception, Wasm has offered a portable, 
platform–independent, and highly efficient 
format that translates high–level languages into 
a binary instruction set that can be executed 
within a sandboxed environment. Currently, 
several programming languages, including C, 
C++, Rust, AssemblyScript, C#, F#, Dart, Go, 
Kotlin, Swift, D, Pascal, Zig, and Grain, are 
supported by WebAssembly, enabling a wide 
range of applications [5–7].  
A WebAssembly binary is structured as a module, 
which encompasses a set of Wasm functions, the 
declarations of their shared global variables, and 
details about the linear memory where these 
functions and variables are stored. The execution 
model follows a stack–based machine, with 
Wasm instructions manipulating the stack by 
pushing and popping values. A Wasm module is 
run by an embedder, such as the host JavaScript 
engine, which manages the loading of modules, 

resolves imports and exports between them, and 
coordinates I/O operations, timers, and error 
handling. 
WebAssembly functions as a technology that 
complements JavaScript, although it does not 
compile from JavaScript itself. Instead, it allows 
seamless integration, where JavaScript facilitates 
interaction between the Document Object 
Model (DOM) and WebAssembly modules within 
browsers [5].  
The main advantage of WebAssembly is its 
capacity to enhance application performance 
while maintaining security. Despite its design for 
secure execution, WebAssembly is not immune 
to various security vulnerabilities that can be 
exploited by malicious actors. These 
vulnerabilities arise from several inherent 
characteristics of the WebAssembly architecture, 
its interaction with host environments, and its 
operational context within web browsers [8–10].  
The key security challenges that have been 
identified include memory safety vulnerabilities, 
side–channel attacks, susceptibility to 
speculative execution vulnerabilities, and the 
complexities associated with its interaction with 
JavaScript [11,12]. These vulnerabilities pose 
serious challenges, underscoring the importance 
of developing robust vulnerability discovery 
methods for securing WebAssembly binaries. It is 
known that the security flaws present in memory–
unsafe languages such as C and C++ can 
propagate into WebAssembly binaries, posing 
significant vulnerabilities [6].  
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This research explores current studies on methods 
for identifying vulnerabilities in WebAssembly 
binaries through static, dynamic, and hybrid 
analysis techniques. 
RESEARCH METHODOLOGY 
A survey was carried out to evaluate the 
increasing research focus on Vulnerability 
Discovery in WebAssembly Binaries, with insights 
drawn from static, dynamic, and hybrid analysis 
techniques. Due to the practical importance of 
this area, the review covers the period from 2018 
to 2024. This research reviews various journal 
articles discussing key concepts and real–world 
applications. 
▓ Research on static analysis methods 

Static analysis refers to the examination of 
WebAssembly code without executing it, relying 
on code inspection to identify potential 
vulnerabilities. This method typically involves 
analyzing the program’s structure, control flow, 
and data flow to detect patterns that could 
lead to security issues. For example, static 
analysis tools can focus on identifying risks such 
as memory access violations, type errors, or 
control flow integrity (CFI) problems. By analyzing 
code at compile–time, static analysis can 
provide early detection of vulnerabilities, 
although it may struggle with issues that only 
emerge during runtime. This section discusses 
three prominent static analysis tools – Wassail, 
Wasmati, and WASP1 – focusing on their 
methodologies, strengths, and limitations. The 
development of these tools offer a unique 
approach to vulnerability detection, from 
Wassail’s focus on information flow to Wasmati’s 
use of code property graphs and WASP1’s 
execution model. While these tools have their 
respective limitations, they represent critical 
advancements in securing WebAssembly 
applications. 
▓ Wassail stands out as the pioneering static 

analysis tool developed exclusively to 
identify vulnerabilities in WebAssembly 
binaries [13,14]. It utilizes a summary–
based, compositional analysis technique 
that focuses on tracking information flow 
throughout the program.  

This approach generates a summary for each 
WebAssembly function, detailing how 
information is transmitted within the function. 
These individual summaries are integrated when 
analyzing function calls, offering a 
comprehensive view of the information flow 
across the whole binary. The analysis itself is 
performed on a Control Flow Graph (CFG), 

where data flow analysis identifies potential 
vulnerabilities related to the movement of 
sensitive or insecure information within the 
program.  
Stiévenart et al. [15] applied a program slicing (a 
broad technique that, based on specific criteria, 
trims a program down to its smallest form while 
still fulfilling those requirements) and their 
experiments demonstrated that program slicing 
reduced binary sizes to 52% of their initial size. 
They concluded that this technique could also 
be beneficially applied to loop analysis. On the 
other hand, Wassail’s summary–based approach 
is particularly noteworthy for its scalability [16]. 
Compositional analysis has been shown to scale 
effectively in other domains, as it reduces the 
complexity of analyzing large binaries by 
focusing on individual functions before 
aggregating their effects at a higher level. 
However, the scalability of Wassail itself has not 
been thoroughly evaluated, leaving questions 
about its effectiveness in analyzing larger, more 
complex WebAssembly binaries [16]. 
Nonetheless, Wassail’s ability to detect 
information flow vulnerabilities makes it a 
valuable tool in identifying a wide range of 
security issues, including unauthorized access to 
memory or improper handling of sensitive data. 
While Wassail’s focus on information flow is 
crucial for preventing data leakage and 
breaches, its reliance on function summaries 
may lead to limitations in detecting 
vulnerabilities that arise from complex 
interactions between functions or external inputs. 
Therefore, Wassail might be more suitable for 
smaller binaries or binaries with well–defined and 
isolated function boundaries. Future work could 
explore expanding Wassail’s capabilities to 
cover inter–function vulnerabilities and improve 
its evaluation in larger–scale applications. 
▓ Wasmati builds upon the foundation laid 

by Wassail by introducing a more 
sophisticated approach to vulnerability 
detection in WebAssembly binaries 
through the construction of a Code 
Property Graph (CPG) [17].  

The CPG is a multi–layered data structure that 
combines information about the program’s 
execution order, control flow, data 
dependencies, and other relevant properties. By 
searching for specific patterns in CPG sub–
graphs, Wasmati can detect vulnerabilities such 
as buffer overflows, use–after–free errors, and 
other memory corruption issues that are 
common in low–level code like WebAssembly. 
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One of the primary challenges Wasmati 
addresses is the rapid growth of the CPG due to 
the inability to statically determine the targets of 
indirect calls. Indirect calls, which allow a 
function to call another function based on 
runtime information, complicate static analysis 
because their targets are not known until the 
program is executed. Wasmati mitigates this issue 
by introducing optimizations during the CPG 
generation process. These optimizations include 
adding annotations, caching intermediate 
results, and using more efficient graph traversal 
algorithms, reducing the complexity of analyzing 
indirect calls. The scientists reported that this tool 
could construct a CPG for a WebAssembly 
binary in an average of 58 seconds, 
demonstrating its efficiency [17]. Brito et al. [18] 
by leveraging optimized techniques for CPG 
generation and four distinct query back–ends, it 
efficiently identifies various vulnerability types in 
WebAssembly binaries code. Extensive testing 
across diverse datasets demonstrated its 
scalability and reliability, making it a valuable 
solution for analyzing complex, real–world 
WebAssembly applications [18]. Additionally, 
Wasmati was found to have a low false positive 
rate, meaning it could accurately identify 
vulnerabilities without flagging benign code as 
malicious. This is a significant improvement over 
some other static analysis tools, which often 
suffer from high false positive rates, leading to 
wasted time and effort in manual verification. 
However, like Wassail, Wasmati has its limitations. 
The reliance on CPG construction can result in 
scalability issues as the size of the binary 
increases. Moreover, while Wasmati can 
efficiently detect certain types of vulnerabilities, 
it may struggle with more complex attack 
patterns that require a deeper understanding of 
runtime behaviors, such as race conditions or 
time–of–check to time–of–use (TOCTOU) 
vulnerabilities. Nevertheless, Wasmati’s ability to 
detect structural vulnerabilities in WebAssembly 
binaries makes it an important tool for static 
analysis in the WebAssembly ecosystem. 
▓ WASP1 introduces a hybrid approach to 

static analysis by combining symbolic 
execution with concolic execution [19]. 
Concolic execution is a technique that 
merges concrete and symbolic execution 
to explore all feasible execution paths 
within a program, maximizing code 
coverage and increasing the likelihood of 
discovering hidden vulnerabilities.  

Symbolic execution allows the tool to generate 
concrete inputs for different execution paths, 
ensuring that all paths are explored and tested 
for potential issues. WASP1 is specifically 
designed to uncover vulnerabilities such as 
integer overflows, buffer overflows, and memory 
access violations in WebAssembly modules. 
Unlike purely static analysis techniques, concolic 
execution enables WASP1 to examine the effects 
of inputs on the execution of the binary, allowing 
for a more comprehensive analysis. To 
demonstrate its effectiveness, the authors of 
WASP1 developed a framework called WASP–C, 
which allows for the testing of C programs by 
converting them into WebAssembly binaries and 
then analyzing them with WASP1. The results of 
the WASP–C framework showed that WASP1 
could effectively uncover a range of bugs and 
vulnerabilities in the tested programs. However, 
one limitation of WASP1 is that it requires access 
to the high–level source code of the program to 
perform its analysis. This constraint means that 
WASP1 is primarily useful for open–source 
programs or situations where the source code is 
available, limiting its applicability in cases where 
only the compiled WebAssembly binary is 
available. WASP–C showed competitive results 
against other tools in symbolic execution tasks, 
focusing on byte–level granularity for Wasm 
code. Despite this limitation, WASP1’s use of 
symbolic execution provides a powerful tool for 
vulnerability discovery. Its ability to maximize 
code coverage ensures that even deeply 
hidden vulnerabilities can be identified, making it 
particularly useful for identifying security issues 
that arise from edge cases or rare execution 
paths. 
Static analysis techniques have the following 
advantages: early detection, comprehensive 
coverage, and scalability. Their limitations 
include false positives/negatives, lack of 
contextual information, and complexity in 
analysis. 
▓ Research on dynamic analysis methods 

In contrast, dynamic analysis involves examining 
WebAssembly binaries while they are being 
executed, providing real–time insights into how 
the program behaves in different scenarios. This 
approach is particularly useful for identifying 
vulnerabilities that arise from the interaction of 
the code with the execution environment, such 
as buffer overflows, race conditions, or 
unauthorized memory access. While dynamic 
analysis offers the advantage of catching 
runtime–specific issues, it typically requires more 
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computational resources and may not cover all 
execution paths of the program. 
▓ Szanto et al. [20] proposed an innovative 

approach to detecting vulnerabilities in 
WebAssembly binaries through the 
implementation of a taint–tracking 
technique. Taint tracking is a widely–used 
method in software security to monitor the 
flow of sensitive data, such as personal 
information or cryptographic keys, 
through a program's execution, helping to 
identify potential vulnerabilities like 
information leakage or code injection 
attacks.  

What distinguishes Szanto et al.'s [20] approach is 
its ability to apply taint tracking without requiring 
modifications to the underlying structure of the 
WebAssembly binary, thereby preserving the 
integrity of the original code. To achieve this, 
they developed a custom virtual machine (VM) 
that runs natively within JavaScript, which is 
particularly significant because of the prevalent 
use of WebAssembly in web applications. By 
integrating the taint–tracking system into a 
JavaScript–based VM, Szanto et al. [20] ensured 
compatibility with existing web technologies, 
enabling seamless deployment in real–world 
web environments. The method works by 
assigning a tainted label to each allocable byte 
in WebAssembly's memory section and each 
variable on the stack. This granularity in labeling 
ensures that every potentially sensitive data 
point is monitored throughout the execution, 
thereby improving the precision of taint 
propagation analysis. A key advantage of this 
technique is its non–intrusiveness.  
Unlike traditional taint–tracking methods that 
often require binary rewriting or instrumentation, 
Szanto et al.'s [20] method avoids these invasive 
alterations, reducing the risk of introducing new 
vulnerabilities or bugs into the system. This aspect 
is critical for security–sensitive applications, 
where even minor modifications to the code can 
lead to unintended side effects. Additionally, by 
preserving the original binary structure, their 
approach ensures better compatibility with 
existing WebAssembly compilers and execution 
environments. However, this precision and non–
intrusiveness come at a cost in terms of runtime 
performance.  
Szanto et al. [20] reported that the overhead 
introduced by their taint–tracking technique 
scales mostly linearly with the execution time of 
the WebAssembly binary. In practice, this means 
that the system can incur a performance 

penalty of up to 100% compared to 
uninstrumented execution. While such an 
overhead might be prohibitive for performance–
critical applications, it is worth noting that in 
many security contexts, this trade–off is 
acceptable. Ensuring the safety and security of 
sensitive data flows often justifies increased 
computational costs, especially in web 
applications that handle personal user 
information or financial data. The technique 
proposed by Szanto et al. [20] contributed to the 
growing body of research aimed at enhancing 
WebAssembly binaries security, a field that has 
gained considerable attention due to the 
increasing adoption of WebAssembly in both 
client–side and server–side applications.  
▓ TaintAssembly. TaintAssembly [21] 

introduced a sophisticated taint–tracking 
mechanism tailored for detecting 
vulnerabilities in WebAssembly binaries 
that distinguishes itself through its 
integration with the V8 JavaScript engine, 
which is the backbone of widely used 
platforms such as Google Chrome and 
Node.js [22].  

This strategic modification leverages the existing 
infrastructure of V8, enabling more efficient and 
seamless taint tracking within web environments 
where Wasm is increasingly prevalent. 
TaintAssembly opted for a more integrated 
approach by modifying the V8 engine itself to 
embed taint–tracking functionalities directly into 
the execution pipeline of WebAssembly binaries. 
By doing so, it minimized the need for external 
interventions or the creation of auxiliary VMs, 
thereby streamlining the taint–tracking process 
and enhancing performance efficiency. 
TaintAssembly supports taint tracking for a 
comprehensive set of data types, including 
integers (i32, i64) and floating–point numbers 
(f32, f64), which are fundamental to Wasm's type 
system. Additionally, it extends taint tracking 
capabilities to linear memory, which is crucial for 
monitoring data flows in applications that heavily 
utilize memory operations. Furthermore, 
TaintAssembly introduces a probabilistic variant 
of taint tracking, which employs statistical 
methods to infer potential taint propagation 
paths. This probabilistic approach enhances the 
detection of complex vulnerabilities that may 
not be easily identifiable through deterministic 
methods alone.  
A notable difference between TaintAssembly 
and Szanto et al.’s approach lies in the handling 
of WebAssembly module structures. 
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TaintAssembly requires modifications to the 
Wasm module before taint labels can be 
assigned to variables. This preprocessing step 
involves analyzing and restructuring the Wasm 
binary to insert taint labels appropriately, 
ensuring that all relevant variables are 
accurately tracked during execution. While this 
introduces an additional preprocessing phase, it 
enables more precise taint propagation and 
reduces the likelihood of false positives in 
vulnerability detection.  
One of the most significant advantages of 
TaintAssembly is its superior runtime performance. 
Through its integration with the V8 engine and 
optimized taint–tracking algorithms, 
TaintAssembly achieves a runtime overhead of 
merely 5–12%. This is a stark contrast to the 
approach proposed by Szanto et al., which 
incurs an overhead of up to 100%. The reduced 
overhead makes TaintAssembly more viable for 
real–world applications, where performance 
constraints are a critical consideration. The 
efficiency gains are primarily attributed to the 
tight integration with V8, which allows for more 
direct and less resource–intensive taint tracking 
compared to running a separate VM.  
Moreover, by leveraging the V8 engine’s 
optimizations and just–in–time (JIT) compilation 
capabilities, TaintAssembly can maintain high 
execution speeds while performing taint analysis. 
This integration ensures that taint tracking does 
not become a bottleneck, thereby supporting 
the deployment of security mechanisms in 
performance–sensitive environments such as 
web browsers and server–side applications. 
However, the requirement to modify the V8 
engine introduces certain limitations. Maintaining 
compatibility with future updates of V8 can be 
challenging, as engine modifications may need 
to be reapplied or adjusted with each new 
release. Additionally, the preprocessing step to 
modify Wasm modules adds complexity to the 
deployment pipeline, potentially increasing the 
effort required to integrate TaintAssembly into 
existing workflows.  
Despite these challenges, TaintAssembly 
represents a significant advancement in the 
realm of WebAssembly security. Its ability to 
provide efficient and accurate taint tracking 
within widely adopted platforms like Google 
Chrome and Node.js underscores its practical 
applicability. By enabling developers to detect 
and mitigate vulnerabilities such as buffer 
overflows, code injection, and information 
leakage in Wasm binaries, TaintAssembly 

contributes to the robustness and reliability of 
web applications. 
▓ Wasabi. Wasabi [23] represents a versatile 

and robust framework designed for the 
dynamic analysis of WebAssembly 
binaries. Wasabi addresses this need by 
employing binary instrumentation 
techniques that enable comprehensive 
runtime analysis without necessitating 
modifications to the original Wasm 
binaries.  

At its core, Wasabi performs binary 
instrumentation by injecting calls to analysis 
functions written in JavaScript directly into the 
WebAssembly binary. This approach leverages 
the seamless interoperability between 
WebAssembly and JavaScript within web 
environments, facilitating the integration of 
sophisticated analysis capabilities. The 
instrumentation process involves identifying 
relevant points within the Wasm binary where 
analysis functions should be inserted, thereby 
enabling real–time monitoring and data 
collection during the execution of the binary.  
By embedding these analysis hooks, Wasabi can 
perform a variety of analyses, including 
instruction counting, call graph extraction, 
memory access tracing, and taint analysis. 
Instruction counting in Wasabi allows developers 
and security analysts to monitor the execution 
frequency of specific instructions, providing 
insights into performance bottlenecks and 
potential optimization opportunities. Call graph 
extraction is another critical feature, enabling 
the construction of a detailed map of function 
calls within the Wasm binary. This facilitates the 
identification of complex interdependencies 
and the detection of anomalous or unauthorized 
function invocations that may indicate malicious 
behavior or software defects. Memory access 
tracing is particularly important for uncovering 
vulnerabilities related to memory safety, such as 
buffer overflows and use–after–free errors. By 
tracking how memory is accessed and 
manipulated during execution, Wasabi can 
identify patterns that may lead to security 
breaches or data corruption.  
Taint analysis, one of Wasabi's most powerful 
features, involves tracking the flow of sensitive or 
untrusted data through the program. This 
enables the detection of potential information 
leaks, injection attacks, and other forms of data 
misuse by ensuring that tainted data does not 
reach critical execution points without proper 
validation. A significant innovation of Wasabi is its 
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support for selective instruction instrumentation. 
Instead of indiscriminately instrumenting every 
instruction in the Wasm binary, Wasabi allows 
users to specify which instructions are relevant for 
a particular analysis.  
This targeted approach reduces the overhead 
associated with instrumentation, as only the 
necessary parts of the binary are instrumented. 
By focusing on specific instructions, Wasabi can 
provide more precise and efficient analysis, 
tailored to the unique requirements of different 
applications and security contexts. Despite its 
advantages, the implementation of Wasabi 
introduces runtime overhead, which varies 
significantly depending on the application and 
the specific instructions being analyzed. The 
authors of Wasabi reported a runtime overhead 
ranging from 2% to 163% [23].  
This variability is attributed to several factors, 
including the complexity of the instrumentation, 
the frequency of instrumented instructions, and 
the nature of the analyzed workload. While a 2% 
overhead is relatively minimal and acceptable 
for many applications, a 163% overhead can be 
prohibitive for performance–critical 
environments.  
Consequently, the selective instrumentation 
feature of Wasabi plays a crucial role in 
balancing the trade–off between analysis 
comprehensiveness and runtime efficiency. 
Wasabi's ability to perform multiple types of 
analysis within a single framework enhances its 
utility for developers and security professionals. 
By providing a unified platform for instruction 
counting, call graph extraction, memory access 
tracing, and taint analysis, Wasabi simplifies the 
process of conducting thorough security 
assessments and performance evaluations of 
WebAssembly binaries. This multi–faceted 
analysis capability is particularly valuable in 
complex applications where understanding the 
interplay between different components is 
essential for ensuring both performance and 
security. 
▓ Fuzzm. Fuzzm [24] represents a specialized 

fuzzer for WebAssembly (Wasm) binaries, 
leveraging the widely adopted American 
Fuzzy Lop (AFL) framework to perform fuzz 
testing on binary–only applications.  

Fuzz testing is a critical technique in software 
security, where random or semi–random inputs 
are supplied to a program to uncover 
vulnerabilities such as crashes, memory 
corruption, or unexpected behavior. Fuzzm 
extends this principle to WebAssembly, enabling 

the security analysis of Wasm binaries even in the 
absence of source code, which is often a 
challenge in the context of proprietary or third–
party applications. The AFL framework, which 
forms the foundation of Fuzzm, is traditionally 
used to fuzz applications by compiling them from 
source code and inserting instrumentation at 
compile time. This instrumentation tracks path 
coverage, a critical metric in fuzzing that 
indicates how thoroughly the fuzzer explores 
different execution paths within the application.  
Path coverage helps guide the fuzzer toward 
unexplored code paths, improving the chances 
of discovering bugs or security flaws. However, 
Fuzzm departs from this source–code–centric 
approach by operating directly on Wasm 
binaries. Since Fuzzm does not have access to 
the source code, it cannot leverage AFL's 
compile–time instrumentation techniques. 
Instead, it employs static binary instrumentation 
to achieve similar functionality. Specifically, 
Fuzzm inserts code at all branches within the 
Wasm binary, ensuring that coverage 
information is collected in a way that is 
compatible with AFL’s feedback–driven fuzzing 
mechanism. This static binary instrumentation is 
crucial for enabling effective fuzzing in the 
absence of source code, allowing Fuzzm to 
monitor and report the execution paths taken by 
the WebAssembly binary during fuzz testing.  
One of the significant advantages of Fuzzm is its 
ability to provide detailed coverage information 
while maintaining a low runtime overhead. 
Binary instrumentation can often introduce 
performance penalties due to the insertion of 
additional code at various points in the 
program's control flow. However, the authors of 
Fuzzm demonstrated that the overhead imposed 
by their static binary instrumentation is minimal, 
making the tool practical for extensive fuzz 
testing campaigns without excessively slowing 
down execution. This low runtime overhead is 
essential for achieving high throughput in fuzzing, 
as it allows more inputs to be tested in a shorter 
period, thereby increasing the likelihood of 
discovering vulnerabilities.  
Furthermore, Fuzzm's design is not tied to a 
specific WebAssembly runtime environment, 
enhancing its versatility. This flexibility means that 
Fuzzm can be used across different Wasm 
execution environments, including both web–
based runtimes (such as those in browsers) and 
standalone Wasm runtimes (such as Wasmtime 
or Wasmer). By decoupling the fuzzer from any 
particular runtime, Fuzzm allows security 
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researchers to apply it to a wide range of Wasm 
applications and execution contexts, 
broadening its applicability. In addition to its 
core fuzzing capabilities, Fuzzm also incorporates 
a canary–based protection mechanism to guard 
against memory corruption vulnerabilities. 
Memory corruption is a common and serious 
security issue in low–level programming 
languages that WebAssembly often interacts 
with, such as C and C++. Canary–based 
protection works by placing special “canary” 
values in memory regions that are vulnerable to 
overflow, such as function stack frames. If a 
buffer overflow or similar vulnerability attempts to 
overwrite the memory, the canary value is 
altered, signaling the presence of a vulnerability 
before it can be exploited. This proactive 
detection mechanism adds an additional layer 
of defense, enabling Fuzzm not only to identify 
crashes but also to flag potential memory safety 
issues before they lead to severe security 
breaches. Fuzzm’s approach to fuzz testing has 
several implications for the future of 
WebAssembly security. Given the increasing 
adoption of WebAssembly in areas such as web 
development, blockchain smart contracts, and 
serverless computing, the ability to fuzz test 
Wasm binaries without access to source code is 
of paramount importance. Proprietary Wasm 
binaries deployed in production environments 
often do not come with readily available source 
code, making tools like Fuzzm indispensable for 
ensuring the security of such applications. 
Moreover, Fuzzm’s low overhead and broad 
runtime compatibility make it an ideal candidate 
for integration into continuous integration (CI) 
pipelines, where frequent security testing of 
binaries is crucial. 
▓ WAFL. WAFL [25] is a cutting–edge binary–

only fuzzer designed specifically for 
WebAssembly (Wasm) binaries, leveraging 
the robust capabilities of the AFL++ [26]] 
framework, a community–driven extension 
of the original American Fuzzy Lop (AFL) 
fuzzer.  

Unlike traditional fuzzers that require access to 
source code for instrumentation, WAFL operates 
directly on Wasm binaries, making it particularly 
valuable for testing proprietary or third–party 
applications where source code may be 
unavailable. A key component of WAFL’s 
architecture is its integration with the WAVM [27] 
runtime, an Ahead–of–Time (AOT) compiler for 
WebAssembly. WAVM translates Wasm binaries 
into optimized native machine code prior to 

execution, which significantly enhances 
performance.  
WAFL extends WAVM by applying a series of 
patches that enable the generation of 
coverage information essential for AFL++’s 
feedback–driven fuzzing approach. These 
patches modify the WAVM runtime to insert 
instrumentation hooks at all branch points within 
the Wasm binary, facilitating precise tracking of 
execution paths without altering the original 
binary structure. WAFL employs AOT compilation 
to minimize runtime overhead, as Wasm binaries 
are precompiled into native code, reducing the 
need for Just–In–Time (JIT) compilation during 
fuzzing. Additionally, WAFL introduces lightweight 
Virtual Machine (VM) snapshots, allowing the 
fuzzer to quickly save and restore the VM state 
between fuzzing iterations. This optimization 
significantly accelerates the fuzzing process by 
minimizing setup and teardown times, thereby 
increasing the overall throughput of fuzzing 
campaigns.  
Empirical evaluations have demonstrated that 
WAFL can achieve impressive performance, 
sometimes even outperforming native AFL x86–64 
harnesses compiled from source code. This 
superior performance is attributed to the efficient 
integration with WAVM and the effective use of 
VM snapshots, which collectively reduce the 
overhead typically associated with binary 
instrumentation. To generate AFL++–compatible 
coverage information, WAFL implements static 
binary instrumentation within the WAVM runtime. 
This process involves inserting instrumentation 
code at all branch instructions within the Wasm 
binary, ensuring comprehensive coverage data 
collection. By capturing detailed execution 
paths, WAFL enhances AFL++’s ability to guide 
the fuzzing process towards unexplored and 
potentially vulnerable areas of the binary. This 
meticulous coverage generation is crucial for 
maximizing the effectiveness of the fuzzing 
efforts, enabling WAFL to uncover a wide range 
of vulnerabilities, including buffer overflows, 
memory corruption, and code injection flaws.  
In addition to its core fuzzing functionalities, WAFL 
incorporates a canary–based protection 
mechanism to detect and prevent memory 
corruption vulnerabilities. Canary values are 
strategically placed in memory regions 
susceptible to overflow attacks. During 
execution, any attempt to overwrite these 
canaries triggers an immediate detection of the 
anomaly, allowing WAFL to flag potential security 
breaches before they can be exploited. This 
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proactive defense mechanism not only aids in 
identifying crashes but also enhances the overall 
security assurance provided by the fuzzer. 
Despite its strengths, WAFL is inherently tied to the 
WAVM runtime, which limits its applicability to 
environments that utilize WAVM for executing 
Wasm binaries [28]. This dependency restricts 
WAFL’s use in scenarios where alternative Wasm 
runtimes, such as Wasmtime or Wasmer, are 
preferred. 
Dynamic analysis techniques have the following 
advantages: runtime context, reduced false 
positives, and detection of complex 
vulnerabilities. Their limitations include limited 
coverage, performance overhead, and 
environmental dependencies. 
▓ Research on hybrid analysis methods 

Recent studies have demonstrated the 
complementary nature of these approaches, 
with static analysis offering early detection of 
code vulnerabilities, and dynamic analysis 
capturing issues that manifest during execution. 
Researchers have explored combining both 
techniques into hybrid models to enhance 
vulnerability detection in WebAssembly binaries. 
These combined approaches provide a more 
comprehensive security assessment by 
leveraging the strengths of both static and 
dynamic methods. 
WASP2 [29] presents a sophisticated framework 
for detecting vulnerabilities in WebAssembly 
binaries by leveraging both static and dynamic 
analysis techniques informed by known 
vulnerability patterns. A core component of 
WASP2 is its deep learning–based vulnerability 
classification model. The model is trained to 
identify vulnerabilities by mapping static features 
from known vulnerable binaries in architectures 
such as x86 and ARM to their corresponding 
WebAssembly binary representations. This 
mapping process involves several steps:  
 Feature Extraction – WASP2 extracts a 

comprehensive set of static features from 
both the source architectures (x86/ARM) and 
the WebAssembly binaries. These features 
include opcode sequences, control flow 
patterns, data flow characteristics, and other 
relevant code attributes that are indicative 
of vulnerabilities.  

 Model Training – The extracted features from 
known vulnerable and benign binaries are 
used to train a deep neural network. The 
architecture of the model typically includes 
multiple layers, such as convolutional layers 
for feature extraction and fully connected 

layers for classification. Techniques such as 
dropout, batch normalization, and 
regularization are employed to prevent 
overfitting and enhance the model's 
generalization capabilities.  

 Cross–Architecture Mapping – By mapping 
features across different architectures, 
WASP2 ensures that the model can 
generalize vulnerability patterns from 
traditional binary formats (x86/ARM) to 
WebAssembly binaries. This cross–
architecture approach is crucial for 
leveraging the extensive body of knowledge 
and datasets available for x86 and ARM 
vulnerabilities, thereby enhancing the 
model's robustness and accuracy. The 
authors of WASP2 conducted extensive 
evaluations to assess the framework's 
effectiveness in detecting known 
vulnerabilities within WebAssembly binaries.  

The evaluation process involved the following 
steps:  
 Dataset Construction: A diverse dataset 

comprising WebAssembly binaries with known 
vulnerabilities, derived from real–world 
applications and benchmark suites, was 
assembled. This dataset included various 
types of vulnerabilities such as buffer 
overflows, use–after–free errors, integer 
overflows, and code injection flaws.  

 Model Performance – The deep learning 
model achieved high accuracy in identifying 
vulnerable subroutines, demonstrating its 
capability to generalize vulnerability patterns 
from x86 and ARM architectures to 
WebAssembly. Precision, recall, and F1–score 
metrics were used to quantify the model's 
performance, with WASP2 attaining precision 
and recall rates exceeding 90% in most 
categories.  

 Runtime Overhead – The integration of static 
and dynamic analysis introduced minimal 
runtime overhead, primarily attributable to the 
efficient feature extraction and model 
inference processes. The dynamic analysis 
phase with Wasabi added an additional layer 
of verification without significantly impacting 
overall performance. WASP2 offers several key 
advantages such as: 

 High Accuracy: By leveraging deep learning 
and cross–architecture feature mapping, 
WASP2 achieves high accuracy in detecting 
known vulnerabilities, reducing the rate of 
false positives and negatives.  
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 Comprehensive Analysis – The combination of 
static and dynamic analysis provides a holistic 
view of potential vulnerabilities, enabling the 
detection of both structural weaknesses and 
runtime behaviors that could lead to security 
breaches.  

 Automation and Scalability – WASP2 
automates the vulnerability detection process, 
making it scalable for large codebases and 
suitable for integration into continuous 
integration/continuous deployment (CI/CD) 
pipelines.  

 Adaptability: The framework can be adapted 
to incorporate new vulnerability patterns and 
support additional architectures, enhancing 
its long–term viability and relevance. Despite 
its strengths, WASP2 exhibits certain limitations: 
dependence on known vulnerabilities, runtime 
environment constraints, and resource 
intensive. 

Hybrid analysis techniques have the following 
advantages: enhanced coverage, improved 
accuracy, and contextual awareness. Their 
limitations include increased complexity, higher 
overhead, and coordination challenges. 
▓ Research on comparative analysis of the 

static, dynamic, and hybrid detection 
techniques  

Vulnerability detection in Wasm binaries can be 
approached through various methodologies, 
primarily categorized into static analysis, 
dynamic analysis, and hybrid techniques. Each 
of these approaches offers distinct advantages 
and faces unique challenges, making a 
comparative understanding essential for 
selecting the appropriate strategy in various 
security contexts (Table 1). 
In the context of WebAssembly, the choice 
between static, dynamic, and hybrid analysis 
techniques depends on several factors, 
including the availability of source code, the 
performance requirements of the application, 
and the nature of potential vulnerabilities. Static 
analysis is particularly useful for preliminary 
security assessments and ensuring code integrity 
before deployment. Dynamic analysis excels in 
environments where real–time monitoring and 
runtime behavior are critical, such as in web 
browsers and server–side applications running 
Wasm modules. Hybrid approaches are ideal for 
scenarios demanding thorough security 
evaluations, where both code structure and 
runtime behavior must be scrutinized to uncover 
a wide array of vulnerabilities. Recent work by M. 
Ţălu [30] discusses advanced data protection 

techniques in WebAssembly, contributing to the 
security landscape. 

Table 1. Comparative analysis of the static, dynamic, and hybrid detection techniques 

Aspect Static Analysis Dynamic Analysis Hybrid Analysis 

Coverage 
Comprehensive 

across all 
possible paths 

Limited to executed 
paths 

Comprehensive by 
combining both static 
and dynamic coverage 

False 
Positives/Negatives 

Higher 
potential for 

false positives 
and negatives 

Lower false positives, 
but may miss some 

vulnerabilities 

Reduced false 
positives and 

negatives through 
cross–validation 

Performance 
Overhead 

Generally low 
as no execution 

is required 

Higher due to 
instrumentation and 

monitoring 

Higher, combining 
overheads of both 

approaches 

Contextual 
Information 

Limited, no 
runtime 
context 

Rich, with runtime 
context 

Enhanced by 
leveraging both static 
and dynamic contexts 

Complexity 
Moderate, 

depends on the 
analysis depth 

High, due to the need 
for controlled 

execution 

High, due to the 
integration of multiple 

methodologies 

Scalability 
High, suitable 

for large 
codebases 

Limited, especially for 
performance–critical 

applications 

Moderate, balancing 
thoroughness with 
resource demands 

Detection 
Capability 

Good for 
structural and 
syntax–based 
vulnerabilities 

Excellent for runtime 
and context–

dependent 
vulnerabilities 

Superior, covering a 
wide range of 
vulnerabilities 

 

CONCLUSIONS 
In conclusion, the security landscape of 
WebAssembly binaries is evolving rapidly as this 
technology gains prominence in modern web 
applications and server–side environments. This 
research has highlighted the critical need for 
effective vulnerability discovery techniques 
tailored to the unique characteristics of Wasm. 
By examining static, dynamic, and hybrid 
analysis methods, we have provided insights into 
the strengths and limitations of each approach. 
Static analysis techniques are valuable for their 
ability to perform comprehensive code 
evaluations and early detection of vulnerabilities 
without execution, yet they often struggle with 
false positives and a lack of contextual 
understanding. In contrast, dynamic analysis 
offers deeper insights into runtime behavior, 
enabling the identification of context–
dependent vulnerabilities. However, it is 
constrained by the execution paths that are 
actually traversed during testing, which can limit 
its overall coverage. Hybrid analysis methods 
emerge as a promising solution, combining the 
thoroughness of static analysis with the 
contextual richness of dynamic analysis. By 
integrating these approaches, hybrid techniques 
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can enhance vulnerability detection while 
mitigating the weaknesses inherent in each 
individual method. The effective deployment of 
these techniques in the WebAssembly ecosystem 
is crucial to ensure the security and reliability of 
applications utilizing Wasm. 
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