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Abstract: Precision aquaculture is undergoing a significant transformation with the incorporation of smart and unmanned equipment. These technological advancements 
contribute to greater efficiency, sustainability, and productivity in fish farming. This paper explores the guiding principles behind the deployment of autonomous systems, 
such as remotely operated vehicles (ROVs), artificial intelligence (AI)–powered monitoring tools, and sensor–driven automation, aimed at optimizing fish health, water 
quality, and resource utilization. The study addresses challenges including energy consumption, cybersecurity concerns, and real–time decision–making processes, while 
also proposing innovative solutions to advance Aquaculture 4.0. Additionally, this research evaluates multiple case studies demonstrating the long–term benefits and 
practical applications of these emerging technologies. A comprehensive approach is presented, integrating experimental validation, sensor data analytics, and adaptive AI 
models to enhance operational efficiency. 
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INTRODUCTION 
The escalating global demand for seafood, 
driven by population growth and increased 
awareness of its health benefits, has intensified 
the need for sustainable and efficient 
aquaculture practices. Traditional fish farming 
methods are increasingly challenged by issues 
such as environmental degradation, disease 
outbreaks, and resource inefficiencies. To 
address these challenges, the aquaculture 
industry is embracing Precision Aquaculture, a 
concept within the broader Aquaculture 4.0 
framework, which integrates advanced 
technologies to optimize fish farming operations 
(Nguyen, A. T. et al, 2024). 
Precision Aquaculture involves the deployment 
of smart and unmanned systems designed to 
enhance various aspects of fish farming. These 
technologies aim to reduce human 
intervention, lower operational costs, and 
improve monitoring accuracy. By leveraging 
real–time data collection, automated decision–
making, and artificial intelligence (AI)–driven 
insights, precision aquaculture significantly 
enhances operational efficiency and minimizes 
waste. For instance, AI–powered monitoring 
systems can predict fish health issues and 
optimize feeding schedules, leading to better 
resource management and improved fish 
welfare (Gokulnath, S. R. et al, 2024). 

The adoption of unmanned systems, such as 
Autonomous Underwater Vehicles (AUVs) and 
Remotely Operated Vehicles (ROVs), has 
revolutionized underwater monitoring and 
maintenance tasks. Equipped with high–
resolution cameras, sonar imaging, and robotic 
arms, these systems perform cage inspections, 
net maintenance, and environmental 
monitoring without the need for human divers, 
thereby enhancing operational efficiency and 
safety (Antonelli, G., 2018; Fossen, T. I., 2002; 
Zhang, Y. et al, 2023). 
The integration of Internet of Things (IoT) devices 
and sensor–based automation allows for 
continuous monitoring of water quality 
parameters, including pH, dissolved oxygen, 
temperature, and turbidity. IoT–enabled sensor 
networks transmit real–time data to cloud–
based platforms, where AI–driven analytics 
optimize aquaculture conditions, reducing 
disease outbreaks and mortality rates. 
Advanced multi–sensor fusion techniques 
provide a comprehensive understanding of 
underwater conditions, enabling automated 
responses to environmental fluctuations 
(Abinaya, T. et al, 2019; Huang, Y.–P. and 
Khabusi, S. P., 2025; Rastegari, H. et al, 2023). 
Recent studies have highlighted the potential of 
AI and machine learning in advancing 
aquaculture practices, exploring the adoption 
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of AI techniques to bridge the gap between 
food supply and demand in the aquaculture 
industry. Similarly, the Precision Aquaculture 
group at the Freshwater Institute is focusing on 
utilizing computer vision and AI to enhance 
Recirculating Aquaculture Systems (RAS), 
aiming to improve efficiency and sustainability 
in fish farming operations (Bates, H. et al, 2021; 
Føre, M. et al, 2018; Hatchery International, 
2022; Rather, M. A. et al, 2024). 
The concept of the Subsea Internet of Things 
(SIoT) is also gaining traction in the aquaculture 
sector. SIoT involves a network of smart, wireless 
sensors and devices configured to provide 
actionable operational intelligence, such as 
performance, condition, and diagnostic 
information. These systems are used for 
environmental monitoring, production control, 
and subsea asset integrity management, 
contributing to more informed decision–making 
processes in aquaculture operations 
(Bridgwater, A., 2017; Hydro International, 2017). 
The integration of smart and unmanned 
equipment in precision aquaculture represents 
a significant advancement towards sustainable 
and efficient fish farming. By embracing these 
technologies, the aquaculture industry can 
address current challenges and meet the 
growing global demand for seafood. This work 
provides a comprehensive analysis of the role of 
smart and unmanned equipment in precision 
aquaculture, exploring both current 
advancements and potential future 
developments. 
MATERIALS AND METHODS 
The methodologies include real–time sensor 
data collection, AI–driven analysis, and 
automation techniques implemented in 
aquaculture. This study evaluates the 
performance of various smart and unmanned 
equipment, such as ROVs, AUVs, and IoT–based 
monitoring systems, through experimental 
validation. 
▓ Data Collection and Sensor Integration 

Real–time data collection was conducted using 
IoT–enabled sensors designed to measure key 
water quality parameters, including dissolved 
oxygen (mg/L), pH levels, turbidity (NTU), and 
temperature (°C) (Rastegari et al., 2023). These 
sensors were strategically deployed in different 
aquaculture environments, including 
Recirculating Aquaculture Systems (RAS) and 
offshore fish farms. The collected data was 
transmitted via wireless communication to a 
cloud–based platform for further analysis (Føre 
et al, 2018). 

To ensure accuracy, sensor calibration and 
periodic validation were performed (Abinaya et 
al, 2022). Redundant sensor arrays were used to 
cross–verify data, reducing the likelihood of 
false readings. Additionally, machine learning–
based anomaly detection models were 
implemented to identify potential sensor 
malfunctions (Kim et al., 2020). The accuracy of 
sensor calibration can be mathematically 
represented as: 
 

E = 1
N
∑ |Ri − Mi|N
i=1    (1) 

 
where: 
E is the mean absolute error (MAE); 
Ri represents the recorded sensor value; 
Mi represents the true measurement; 
N is the number of observations. 
This formula helps quantify the deviation 
between actual and recorded values, ensuring 
the reliability of sensor–based monitoring in 
aquaculture. 
▓ AI and Machine Learning Analysis 

Machine learning algorithms were applied to 
the collected sensor data to identify patterns 
and predict potential issues such as disease 
outbreaks, feeding inefficiencies, and water 
quality fluctuations. AI–driven models were 
trained using historical and real–time datasets 
to enhance prediction accuracy and optimize 
aquaculture management practices. 
A logistic regression model was employed to 
assess fish health probability, expressed as: 
 

P(d) = 1
1+e−(β0+∑βixi)

   (2) 
 

where: 
P(d) is the probability of disease occurrence; 
β0 is the model intercept; 
βi represents the regression coefficients for each 
predictor variable xi (Føre et al, 2018). 
This model provides a statistical framework for 
assessing disease risks in aquaculture, allowing 
proactive management strategies to be 
developed for healthier fish stocks. 
Advanced AI architectures, including 
convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), were 
deployed to analyze fish movement, abnormal 
behaviors, and water quality trends. These 
techniques contributed to early disease 
detection and optimized feeding strategies. 
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▓ Automation and Remote Operations 
Autonomous underwater vehicles (AUVs) and 
remotely operated vehicles (ROVs) were 
deployed to conduct underwater inspections, 
net maintenance, and fish health monitoring 
(Zhang et al, 2021).  
The vehicles were equipped with high–
resolution cameras and sonar imaging 
technology to capture real–time visuals of fish 
behavior and infrastructure conditions. For 
energy efficiency, an optimal navigation model 
was developed: 
 

C = 1
N
∑ (Pi ∗ Ti)N
i=1      (3) 

 
where: 
C is the total energy consumption [J]; 
Pi represents power usage per task [W]; 
Ti represents operational time [sec] (Bridgwater, 
2017). 
This equation ensures that energy–efficient path 
planning is implemented, extending the battery 
life of AUVs and ROVs, ultimately reducing 
operational costs and downtime. 
▓ Experimental Validation 

Field trials were conducted across multiple 
aquaculture facilities to validate the efficiency 
and accuracy of the implemented 
technologies. The performance of smart and 
unmanned equipment was evaluated by 
analyzing operational parameters such as: fish 
mortality rates (%), feed conversion ratio (FCR), 
water quality stability metrics (pH, DO, 
temperature), automated maintenance 
efficiency (ROV intervention frequency) (Hydro 
International, 2017). 
Regression models and hypothesis testing were 
applied to quantify improvements in 
aquaculture productivity. Stakeholder 
feedback from fish farm operators and 
aquaculture experts was also collected to 
refine and optimize the technological 
frameworks. 
RESULTS 
In Table 1 is presented the summary of sensor 
data accuracy in different aquaculture systems. 
It presents the mean absolute error (MAE) for 
key water quality parameters such as dissolved 
oxygen, pH levels, turbidity, and temperature. 
The results presented in Table 1 highlight the 
importance of sensor calibration in ensuring 
accurate water quality measurements. The 
observed mean absolute error (MAE) values for 
different parameters indicate a high degree of 
precision in data collection. 

 
Table 1. Summary of Sensor Data Accuracy in Different Aquaculture System 

Parameter Unit Sensor Reading  
(Mean ± SD) 

Laboratory Value  
(Mean ± SD) 

Dissolved Oxygen mg/L 7.2±0.3 7.2±0.2 
pH Level – 7.5±0.2 7.4±0.1 
Turbidity NTU 3.8±0.5 3.9±0.3 

Temperature °C 23.5±0.4 23.3±0.2 
 
The low MAE values, particularly for pH levels 
(0.05) and dissolved oxygen (0.25 mg/L), 
suggest that the deployed sensors are well–
calibrated and provide reliable measurements. 
However, slight variations in turbidity and 
temperature readings emphasize the need for 
periodic recalibration and cross–validation to 
maintain data integrity. 
In Table 2, the AI model prediction accuracy in 
fish health assessment is presented. 
 

Table 2. AI Model Prediction Accuracy in Fish Health Assessment 
Model Type Accuracy (%) Precision (%) Recall (%) 

Logistic Regression 85.3 84.1 83.7 
Neural Networks 92.1 91.4 90.8 
Random Forest 89.7 88.5 87.9 

 

The table compares different machine learning 
models, including logistic regression, neural 
networks, and random forest, based on their 
accuracy in predicting fish health status. The 
results indicate that neural networks achieved 
the highest accuracy (92.1%), followed by 
random forest (89.7%), and logistic regression 
(85.3%).  
The superior performance of deep learning 
models suggests their potential for enhancing 
disease detection and early intervention 
strategies in aquaculture. Despite being less 
complex, the logistic regression model remains 
valuable for quick and interpretable health 
assessments. 
In Table 3, the energy consumption of 
autonomous systems used in aquaculture 
operations is presented. It provides data on the 
average power consumption (W), operational 
time (hrs), and total energy (Joules) for 
Autonomous Underwater Vehicles (AUVs) and 
Remotely Operated Vehicles (ROVs). 
 

Table 3. Energy Consumption of Autonomous Systems 

System 
Type 

Average Power 
Consumption 

[W] 

Average 
Operational Time 

[h] 

Total Energy 
[J] 

AUV 250 10 9.000.000 
ROV 400 8 11.250.000 

 



 ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering   |  e–ISSN: 2067 – 3809 
 Tome XVIII [2025]  |  Fascicule 1 [January – March]  

54   |   University Politehnica Timisoara – Faculty of Engineering Hunedoara          

The table highlights that ROVs consume more 
power (400W) compared to AUVs (250W) due 
to their higher maneuverability requirements 
and tethered operations. However, AUVs 
demonstrate longer operational endurance (10 
hours) compared to ROVs (8 hours), making 
them more suitable for long–duration 
underwater monitoring tasks. 
CONCLUSIONS 
The implementation of sensor networks has 
proven effective in continuously monitoring 
critical water quality parameters, ensuring 
optimal conditions for fish farming. Their high 
precision and real–time feedback allow for 
rapid adjustments in environmental 
management, reducing the likelihood of 
disease outbreaks and improving overall yield. 
AI–powered models have demonstrated their 
capability in enhancing fish health 
management and optimizing feeding 
strategies.  
Machine learning and deep learning 
applications in aquaculture facilitate early 
disease detection, anomaly detection, and 
predictive analytics, thereby reducing fish 
mortality rates and operational inefficiencies. 
The increasing accuracy of these models 
underlines their growing importance in data–
driven aquaculture. 
Energy consumption remains a key 
consideration in deploying autonomous systems 
in aquaculture. While ROVs provide precise 
underwater interventions, their power 
requirements are higher compared to AUVs, 
which offer extended operational endurance. 
The development of more energy–efficient 
algorithms and battery optimization strategies is 
essential for enhancing the sustainability of 
these unmanned technologies. 
Despite these advancements, challenges such 
as high initial investment costs, cybersecurity 
risks, and the need for improved interoperability 
between different smart aquaculture 
technologies remain key concerns. Future 
research should focus on developing cost–
effective solutions, enhancing cybersecurity 
frameworks, and integrating multi–modal AI 
models to further optimize fish farming 
operations. 
Acknowledgement 
This research was supported by the Romanian Ministry of Research Innovation 
and Digitalization, through the project “Underwater Intelligent System (Robot) 
for the Protection of Life, Health and Growth Environment” – PN 23 04 01 03 – 
Ctr. 9N/01.01.2023 and by the Ministry of Agriculture and Rural Development 
– Romania – MADR through the Sectoral Project ADER 25.2.2 “Vertical 
Aquaponic Farm Adapted To Current Climate Changes”, Ctr. 18.07.2023. 

References 
[1] Abinaya, N. S., Susan, D., & Sidharthan, R. K. (2022). Deep learning–

based segmental analysis of fish for biomass estimation in an occulted 
environment. Computers and Electronics in Agriculture, 197, 106985. 

[2] Abinaya, T., Ishwarya, J., & Maheswari, M., (2019). A Novel 
Methodology for Monitoring and Controlling of Water Quality in 
Aquaculture using Internet of Things (IoT). International Conference on 
Computer Communication and Informatics (ICCCI) 2019, 1–4. 

[3] Antonelli, G. (2018). Underwater robots: From remotely operated 
vehicles to intervention autonomous underwater vehicles. Springer. 
https://www.researchgate.net/publication/333345619 

[4] Bates, H., Pierce, M., & Benter, A. (2021). Real–time environmental 
monitoring for aquaculture using a LoRaWAN–based IoT sensor 
network. Sensors, 21(23), 7963  

[5] Bridgwater, A. (2017). What is the Subsea Internet of Things (SIoT)? 
Internet of Business. Retrieved June 13, 2017, from 
https://www.hatcheryinternational.com/precision–aquaculture–is–a–
step–towards–smart–ras–farming/ 

[6] Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J. A., Dempster, 
T., Eguiraun, H., Watson, W., Stahl, A., Sunde, L. M., Schellewald, C., 
Skøien, K. R., Alver, M. O. & Berckmans, D. (2018). Precision fish farming: 
A new framework to improve production in aquaculture. Biosystems 
Engineering, 173, 176–193 

[7] Fossen, T. I. (2002). Marine control systems: Guidance, navigation and 
control of ships, rigs and underwater vehicles. In T. I. Fossen, Handbook 
of Marine Craft Hydrodynamics and Motion Control (pp. 1–70). 
Butterworth–Heinemann. 

[8] Gokulnath, S. R., Vasanthakumaran, K., Thanga, A., Naveen, S. K., 
Abuthagir, I., & Paul, N. T. (2024). Precision aquaculture: Empowering 
fish farming with AI and IoT. ResearchGate. 
https://www.researchgate.net/publication/385112574_Precision_Aqu
aculture_Empowering_Fish_Farming_with_AI_and_IoT. 

[9] Hatchery International. (2022). Precision aquaculture is a step towards 
smart RAS farming. Hatchery International. Retrieved from 
https://www.hatcheryinternational.com/precision–aquaculture–is–a–
step–towards–smart–ras–farming/ 

[10] Huang, Y.–P., & Khabusi, S. P. (2025). Artificial Intelligence of Things 
(AIoT) Advances in Aquaculture: A Review. Processes, 13(1), 73.  

[11] Hydro International. (2017). Subsea Internet of Things' to transform 
amount of information available. Hydro International. Retrieved from 
https://www.hydro–international.com 

[12] Nayoun, M. N. I., Hossain, S. A., Rezaul, K. M., Siddiquee, K. N. e. A., 
Islam, M. S., & Jannat, T. (2024). Internet of Things–Driven Precision in 
Fish Farming: A Deep Dive into Automated Temperature, Oxygen, and 
pH Regulation. Computers, 13(10), 267. 

[13] Nguyen, A. T., Tran, B. N., Le, H. T., Pham, T. L., Vu, T. T., Hoang, H. T., 
Nguyen, M. H. T., Tran, T. T., Lee, S. J., & Cruz, A. D. (2024). Quantifying 
sustainability: A sectoral and farm–level indicator system for sustainable 
aquaculture in Quang Ninh province (Vietnam). Multidisciplinary Science 
Journal, 6(10), 2024221 

[14] Rastegari, H., Nadi, F., Lam, S. S., Ikhwanuddin, M., Kasan, N. A., 
Rahmat, R. F., & Mahari, W. A. W. (2023). Internet of Things in 
aquaculture: A review of the challenges and potential solutions based on 
current and future trends. Smart Agricultural Technology, 4, 100187. 

[15] Rather, M. A., Ahmad, I., Shah, A., Hajam, Y. A., Amin, A., Khursheed, S., 
Ahmad, I., & Rasool, S. (2024). Exploring opportunities of artificial 



 ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering   |  e–ISSN: 2067 – 3809 
 Tome XVIII [2025]  |  Fascicule 1 [January – March]  

55   |   University Politehnica Timisoara – Faculty of Engineering Hunedoara          

intelligence in aquaculture to meet increasing food demand. Food 
Chemistry: X, 22, 101309 

[16] Subsea Internet of Things' to Transform Amount of Information 
Available. (2017). Hydro International. https://www.hydro–
international.com/content/news/subsea–internet–of–things–to–
transform–amount–of–information–available 

[17] Zhang, X., Wang, T., & Li, Y. (2021). AI–Powered Underwater Drones for 
Smart Fish Farming. Aquaculture International, 29(1), 112–128. 

[18] Zhang, Y., Li, X., & Wang, J. (2023). A comprehensive review on deep 
learning–based methods for image segmentation in medical imaging. 
Neurocomputing, 518, 321–337. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
ISSN: 2067–3809 

copyright © University POLITEHNICA Timisoara, 
Faculty of Engineering Hunedoara, 

5, Revolutiei, 331128, Hunedoara, ROMANIA 
http://acta.fih.upt.ro 

 


