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Abstract: Asa River has a diminishing water quality which is currently insufficiently monitored and the available data are dispersed and insufficient to create management 
policies that are well–informed. Given this, this research sought to create a streamflow–water quality model that is adapted to the unique features and intricacies of the 
Asa River, Ilorin. Linear mixed effects models that integrate streamflow and water quality parameters to simulate the dynamic interactions within Asa River were 
developed using R package. The findings suggest that Asa River discharge (Q) follows a seasonal hydrological trend with September being its peak flow month and that 
variations in EC are linked to changes in Discharge while other water quality parameters do not exhibit significant relationships with streamflow. Linear mixed–effects 
model (Model 2) which includes random effects for different months demonstrated a better fit to the data than multiple linear regression model (Model 1) and it was 
selected because it was found to be a more suitable choice for explaining the variability in “Discharge” and exhibited a better predictive performance. This model is built on 
a unique dataset of Asa River and hence may not apply in other temporal or spatial situations. 
Keywords: model, discharge, water quality, Asa River Ilorin 
 
 
BACKGROUND OF STUDY 
Life is in water (Hyun, 2018). Water is the second 
most important need for life to exist next to air 
(Omer, 2019). Water quality is most popularly 
defined as the physical, chemical, biological 
(Spellman, 2013) and organoleptic (taste–
related) characteristics of water (Krishna, Jose, 
Jeeson, Ashok, & Suresh, 2022). Water quality is a 
measure of the condition of water relative to 
the requirements of any human need or 
purpose and/or one or more biotic species 
(Shah, 2017).  
Streamflow, measured in m3/s, refers to the 
volume of water flowing past a cross–section of 
a stream over a given period of time (Water 
Action Volunteers, 2023). Streamflow naturally 
varies over the course of a year. The amount of 
streamflow is important because very high flows 
can cause erosion and damaging floods, while 
very low flows can diminish water quality, harm 
fish, and reduce the amount of water available 
for people to use. Climate change can also 
affect streamflow in several ways (U.S. 
Environmental Protection Agency, 2016).  
Sometimes, it is assumed that there are direct, 
linear relationships between changes in the 
streamflow regime and concentrations or loads 
which lead to speculative predictions that 
increasing trends in streamflow lead directly to 
higher loads or concentrations (Ockenden, et 
al., 2016; Rice, Moyer, & Mills, 2017; Rostami, He, 

& Hassan, 2018). In contrast, Murphy & Sprague 
(2019) argued that the relationship between 
water quality and streamflow trends is more 
nuanced, and hence presented a conceptual 
model and analytical approach to explore this 
relationship without undermining possible 
challenges. Concentrations at low stream flows 
are of utmost importance when pollution is 
primarily from point sources. However, for many 
non–point source pollutants, concentrations are 
positively associated with high streamflow.  
Systematic changes in streamflow regime are 
most often due to natural or anthropogenic 
causes. Simple approaches to trend estimation 
like linear regression amongst others are sensitive 
to both types of streamflow variability and as 
such do not isolate the effects of human actions 
on water quality. Instead, these trend estimates 
usually reflects the combined effects of human 
actions and streamflow variability. 
To assess and control the impact of water 
pollution, water quality models are crucial 
decision–support tools (Ríha, 2020). Simulating 
water quality requires model integration 
because it is uncommon for a single model to 
be able to replicate the necessary processes at 
the various scales and levels of complexity 
needed (Fu, et al., 2020). 
Streamflow–water quality models are essential 
scientific instruments that are used to help 
manage water resources, forecast, predict and 
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explain phenomena at various spatiotemporal 
scales when direct observation or 
experimentation is not feasible, not morally nor 
economically acceptable or both (Baffaut, et 
al., 2015). They are useful tools in determining 
the spatial and temporal distribution of 
pollutants in the water, assessing and 
forecasting pollutant transport, modelling and 
forecasting intricate processes in water 
ecosystems and accelerating decisions about 
how water quality will be changed. These 
processes are intimately associated with the 
characteristics of the water flow amongst others 
(Liu, 2018). 
Most rivers in Nigeria are currently not sufficiently 
monitored and the available data are dispersed 
and insufficient to create management policies 
that are well–informed. These difficulties are 
exacerbated by the lack of a forecasting 
streamflow–water quality model for most, 
thereby inhibiting the ability of local authorities, 
environmental agencies and researchers to 
make proactive, data–driven and adaptive 
management decisions for maintaining the 
river's ecological integrity and guaranteeing a 
sustainable supply of water for the urban 
population. This research therefore seeks to 
develop a Streamflow–Water Quality Model that 
is adapted to the unique features and 
intricacies of one of such rivers, the Asa River as 
it flows through Ilorin Township in Central Nigeria.  
DESCRIPTION OF THE STUDY AREA 
Situated in Ilorin, Nigeria, the Asa River is an 
essential source of water for industrial, 
agricultural and residential uses (Ahamefule, et 
al., 2019). Nonetheless, worries over the river's 
declining water quality have been voiced 
recently (Akinwunmi, 2019). The Asa River's 
water quality has declined due to a number of 
human activities, including urbanization, 
industrial effluents and agricultural runoff. This 
has made the river unsafe for downstream 
consumption as well as detrimental to 
ecosystems (Solihu & Bilewu, 2022). Additionally, 
during rainy seasons in Ilorin, precipitation often 
falls as rain leading to changes in Asa River flows 
and most pollutants enter the water source via 
runoff and rapidly pollutes the receiving water 
body (Hou, et al., 2022). 
Asa River originates from Oyo State and it passes 
through Ilorin, the Kwara State's capital city in 
Nigeria's North Central region (Ayanshola, et al., 
2021) as illustrated in Figure 1. It is located 
between latitudes 8036′N and 8024′N and 
longitudes 4036′E and 4010′E in Ilorin and has 
many tributaries in the city. It flows in a South–

North direction through the town (Balogun & 
Ganiyu, 2017). It is 302 ha in surface area 
(Ogundiran & Fawole, 2014). It is 56 km long 
from source at Ilorin.  
The climate in Ilorin is humid, tropical, wet and 
dry climate (Ahamefule, et al., 2019). During 
high flows, the river stage is 2.9 m approximately 
and 60 m wide. Along the river's banks are 
residential, commercial, and agricultural 
structures. Asa River serves as a vital source of 
water for the city's economy, agriculture and 
environmental needs. Ritualists also perform 
rituals beneath the Asa Bridge and at the 
location of the dam site. 

 
Figure 1: Map of Ilorin Metropolis showing Asa River course in Ilorin, Kwara State, 

Nigeria (produced by the author) 
MATERIALS AND METHOD 
▓ Data Collection 

Five locations along the Asa River were selected 
relative to the Asa Dam reservoir which is 
located naturally at the entrance of the river 
into Ilorin town. Careful attention was placed on 
choosing points close to anthropogenic 
activities. Discharge data was obtained from 
the conversion of catchment rainfall data of 
Asa River watershed. One year rainfall data for 
Asa River Catchment (which includes Ibadan, 
Ogbomoso, Oshogbo and Ilorin) was obtained 
from Nigerian Meteorological Agency (NiMET), 
and the water quality data was collected for 
one year which is the corresponding year of 
discharge. 
Sterile water bottles were used to collect water 
directly from below the stream surface at each 
sampling location for seven months (covering 
both dry and rainy seasons) of the 
corresponding year of discharge. The 
temperature was immediately taken and then 
the bottle covered. The sample was 
immediately transported in a cooler containing 
ice packs to laboratory for analysis. The 
obtained water samples were subjected to 
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microbial and physicochemical analysis. 
Standard Methods for the Examination of Water 
and Wastewater (America Public Health 
Association (APHA), 1995) was used for this 
analysis with results in duplicates. Water quality 
parameters tested for include: Total Dissolved 
Solids (TDS μs/cm), Electrical Conductivity (EC 
us/cm), pH, Turbidity (NTU), Biochemical Oxygen 
Demand (BOD mg/l), Dissolved Oxygen (DO 
mg/l), Nitrate (NO3– mg/l), Sulphate (SO42– mg/l), 
Chemical Oxygen Demand (COD mg/l), TOC 
(%), Phosphorus (P mg/l), Colour (TCU), Total 
Suspended Solids (TSS %), Total Nitrogen (N %), 
Alkalinity (mg/l), Temperature (°c), Arsenic (As 
mg/l), Chromium (Cr mg/l), Copper (Cu mg/l), 
Manganese (Mn mg/l), Nikel (Ni mg/l), Lead (Pb 
mg/l), Zinc (Zn mg/l), Cadmium (Cd mg/l), 
Calcium (Ca mg/l), Potassium (K mg/l), Sodium 
(Na mg/l), Magnesium (Mg mg/l), Total Bacteria 
Count (TBC x104 cfu/ml), Total Coliform Count 
(TCC x 102 cfu/100ml), Staphylococcal 
count(x103 cfu/ml) and Most Probable number 
(MPN/100ml). 
Principal Components Analysis (Labrín & Urdinez, 
2020) was used to analyze and reduce the 
dimensionality of the data. Consequently, four 
parameters that represents over 99% of the 
variance were identified. Missing values for the 
variables (EC, COD, Na, Alkalinity and 
Discharge) were addressed at this stage. 
Multiple Imputation by Chained Equations 
(MICE) was used to impute the missing values 
resulting in the creation of the complete dataset 
required for the Streamflow–Water Quality 
Model (Mera–Gaona, Neumann, Vargas–
Canas, & Lo´pez, 2021; Roderick & Donald, 2020; 
Alruhaymi & Kim, 2021; Aisyah & Aszila, 2023). 
MICE Imputation is a sophisticated method for 
addressing missing data. It utilizes machine 
learning models to estimate missing values by 
considering other known data as predictors 
using bootstrapping approach (Kim, et al., 2022; 
Alruhaymi & Kim, 2021; Resche–Rigon & White, 
2016; R Core Team, 2017). The method was 
iteratively applied multiple times similar to 
bootstrapping, by resampling the data and 
averaging the predictions. This approach 
enhanced data completeness by imputing 
missing values effectively. Continuous variables 
in the dataset including EC, COD, Na, Alkalinity 
and Discharge, exhibited some deviation from 
normality. To conform to the modeling 
assumptions required for the chosen statistical 
methods, a log transformation was applied to 
these variables. This transformation aimed to 

restore a more normal distribution to support the 
subsequent modeling processes. 
▓ Model Development 

R package was used to develop Water Quality–
Streamflow Model. Model Comparison was 
done using Chi–Test. Model Performance was 
judged for accuracy using statistical metrics 
(Mera–Gaona, Neumann, Vargas–Canas, & 
Lo´pez, 2021; Khan & Hoque, 2020). 
RESULTS AND DISCUSSION 
Table 1 represents the results of Principal 
Component Analysis. Eigenvalues listed in 
descending order represents the variance 
explained by each principal component (PC). 
 

Table 1: Principal Component Analysis Result 
Principal Component Analysis 

PC Eigenvalue % variance 
1 (EC) 8074.73 82.509 
2(COD) 1413.86 14.447 
3 (Na) 157.91 1.614 

4(Alkalinity) 82.15 0.839 
5(Discharge) 39.51 0.404 

6 15.04 0.154 
7 1.73 0.017 
8 1.18 0.012 
9 0.28 0.002 

10 0.11 0.001 
11 0.02 0.000 

 
The first four PCs in Table 1 explains 99.41% of the 
total variance. This means that EC, COD, Na 
and Alkalinity represented by PC1, PC2, PC3 
and PC4 can adequately represent all the other 
parameters.  
▓ Relationship between Principal Water 

Quality Parameters and Flow 
Table 2 shows the value of selected parameters 
for different months in the Asa River.  
 

Table 2: Principal Water Quality Parameters and Flow for Asa River 

Months 

EC 
(us/cm) 

Mean 
Value 

COD 
(mg/l) 
Mean 
Value 

Na (mg/l) 
Mean 
Value 

Alkalinity 
(mg/l) 
Mean 
Value 

Discharge  
(Q m3/s) of 
Asa River, 

Ilorin 
Jan 451 342.0 1.86 6.86 0 
Feb 453 340.0 3.86 6.87 0.01 
Mar 450 240.0 2.99 6.89 4.58 
Apr 445 140.0 2.68 6.97 4.36 
May 441 96.0 137.19 7.11 12.81 
Jun 342 152.0 2.01 6.58 17.04 
Jul 240 150.0 1.51 7.12 10.11 

Aug 218 139.6 1.82 42.00 4.89 
Sep 185 218.0 1.64 6.543 27.89 
Oct 133 104.0 1.47 39 20.60 
Nov 122 102.0 1.35 6.95 0.09 
Dec 110 100.0 1.25 6.85 0.00 
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Asa River discharge (Q) follows a seasonal 
hydrological trend with September being its 
peak flow (27.89m3/s) month. There is a clear 
seasonal pattern and a noticeable inverse 
relationship between EC and Q as well as COD 
and Q. The rainy season months with higher 
discharge tend to have lower EC and COD 
levels indicating improved water quality due to 
increased flow in the catchment and dilution of 
pollutants. There are however a couple of 
outliers in the data obtained which did not 
influence the main.  
The elevated level in Na in May could be due to 
point source pollution events within the close 
proximity to Asa River. The fluctuations in 
alkalinity and discharge in the year suggest 
seasonal variations in water quality and flow 
regime. The months with higher discharge tend 
to have elevated alkalinity levels. This results 
from dilution of pollutants and neutralization of 
acidic pollutants that might have been 
discharged into the river via runoff or industrial 
chemical discharge into the river hence, 
increasing the water’s buffering capacity. The 
observed elevation in alkalinity levels may also 
be suggestive of increased agricultural runoff 
within the catchment in August and October.  
These suggests that monitoring and 
management efforts should be intensified during 
the dry season to mitigate the adverse impacts 
of high pollutants levels on water quality. 
Understanding these variations can help in the 
development of appropriate strategies for water 
resource management, pollution control, 
discharge limits, conservation efforts and 
maintaining water quality in the Asa Damsite 
Catchment.  
▓ Predictive Model for Streamflow–Water 

Quality  
All analysis were conducted in R package. In 
the analysis, two models were developed and 
compared to study river discharge and assess 
their suitability for explaining the variability in the 
“Discharge” variable. These models include a 
multiple linear regression model (Model 1) and a 
linear mixed–effects model (Model 2). 
 Model 1: Fixed Effects Model 
Model 1 is a linear regression model that 
predicts “Discharge” based on the predictor 
variables: “EC,” “COD,” “Na” and “Alkalinity.”  It 
is specified as follows: 
 

Discharge = EC + COD + Na + Alkalinity                               (i) 
 
The results displayed in Table 3 shows that the 
intercept is 9.011 indicating the estimated 
Discharge when all predictor variables are zero. 

“EC” is significantly associated with “Discharge” 
(p < 0.0001) with a negative relationship 
suggesting that higher EC values are linked to 
lower Discharge. However, “COD,” “Na” and 
“Alkalinity” do not exhibit significant associations 
with “Discharge.” The model is statistically 
significant as indicated by the very low p–value 
(p < 0.0001). Model 1 offers a fixed–effects 
approach to predict “Discharge” based on the 
specified variables. 
 Model 2: Random Effects Model 
Model 2 is a linear mixed–effects model that 
introduces random effects accounting for 
variations across different months (“Months”). 
Including random effects for “Months” allows it 
to capture variations in “Discharge” between 
different months. It is specified as follows: 
 

Discharge = EC + COD + Na + Alkalinity + (1 | Months)                   (ii) 
 
The results in Table 3 reveal that the intercept is 
7.220 representing the estimated Discharge 
when all predictor variables are zero. “EC” is 
significantly associated with “Discharge” (p < 
0.0001). However, “COD,” “Na” and “Alkalinity” 
do not exhibit significant associations with 
“Discharge.”  
 

Table 3: Fixed Effects for Models 1 and 2 
Fixed Effects for Models 1 and 2 

 Model 1 Model 2 
Variable Beta Standard Error (SE) Pr(>|t|) Beta SE Pr(>|t|) 
Intercept 9.011 1.251 0.000 7.22 1.243 0.000 

EC –0.987 0.159 0.000 –0.814 0.155 0.000 
COD –0.185 0.159 0.248 –0.058 0.151 0.701 
Na 0.130 0.064 0.044 0.102 0.069 0.142 

Alkalinity –0.282 0.120 0.021 –0.187 0.139 0.181 
 
As observed in Table 4, the introduction of 
random effects enhances the model's ability to 
explain variations in “Discharge.” The “Months 
(Intercept)” random effect has a variance of 
0.2008 indicating that there are noticeable 
variations in Discharge between different 
months. The associated standard deviation (Std. 
Dev.) of 0.4481 signifies the typical magnitude of 
these month–to–month variations.  
 

Table 4: Random Effects for Model 2 
Random Effects for Model 2 

Variable Variance Std. Dev. 
Months (Intercept) 0.2008 0.4481 

Residual 0.6278 0.7923 
 
The “Residual” category accounts for 
unexplained variability in Discharge. With a 
variance of 0.6278 and a standard deviation of 
0.7923, it suggests that there is a considerable 



 ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering   |  e–ISSN: 2067 – 3809 
 Tome XVIII [2025]  |  Fascicule 2 [April – June]  

57   |   University Politehnica Timisoara – Faculty of Engineering Hunedoara          

level of unexplained variation in Discharge that 
the model could not capture, possibly due to 
factors not included in the model or random 
fluctuations. 
 Model Comparison: 
The model comparison test (Chi–squared test) 
between Model 1 and Model 2 shown in Table 5 
demonstrates that Model 2 significantly 
improves the model fit compared to Model 1 
based on the lower values of the Akaike 
Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) for p = 0.001. In 
summary, Model 2 which includes random 
effects for different months provides a better fit 
to the data and is a more suitable choice for 
explaining the variability in “Discharge.” 
 

Table 5: Model Comparison 
Model Comparison 

Model Parameters AIC BIC Log–L Deviance Chi–sq Df p–value 
Model 1 6 319.66 336.38 –153.83 30766    
Model 2 7 310.72 330.23 –148.36 296.72 10.94 1 0.0009 

 
▓ Model Performance 

The performance metrics for both models are 
summarized in Table 6. The coefficient of 
determination (R–squared) for Model 1 is 0.276, 
while the R–squared for Model 2 is 0.467. These 
values indicate that Model 2 explains a larger 
proportion of the variance in the data 
compared to Model 1. Also, the R–squared of 
0.467 may be due to non–point source pollution 
of Asa River suggesting that the R–squared 
value could have been higher if it were a point 
source pollution. These results are for non–point 
source pollution samples. The performance 
metrics aligns with the model comparison results 
and supports the choice of Model 2 for its better 
predictive performance. 
 

Table 6: Model Performance Metrics 
Model Performance Metrics 

Model R–squared 
(R²) 

Root Mean 
Squared Error 

(RMSE) 

Mean 
Absolute Error 

(MAE) 
Model 1 (Fixed Effect) 0.267 0.936 0.73 

Model 2 (Random 
Effect) 

0.467 0.865 0.698 

 
Linear mixed effects models were employed to 
examine the relationship between streamflow 
(Discharge) and water quality parameters (EC, 
COD, Na and Alkalinity). The results revealed a 
significant negative relationship between EC 
and Discharge (p < 0.001) indicating that as 
Discharge increases, EC decreases. However, 
no significant relationships were found for COD, 

Na and Alkalinity in relation to Discharge. These 
findings suggest that variations in EC are linked 
to changes in Discharge while other water 
quality parameters do not exhibit significant 
relationships with streamflow. This also tends to 
justify the findings in Table 1 where the EC 
represents over 82% of the variance. 
CONCLUSIONS 
This study aimed at developing a Water Quality–
Streamflow Model for the Asa River in Ilorin, 
Nigeria. The study reveals that Asa River 
discharge (Q) follows a seasonal hydrological 
trend with September being its peak flow month 
and that variations in EC are linked to changes 
in Discharge while other water quality 
parameters do not exhibit significant 
relationships with streamflow. Linear mixed 
effects models that integrate streamflow and 
water quality parameters (principal 
components) to simulate the dynamic 
interactions within Asa River were developed. 
Model 2 which includes random effects for 
different months demonstrated a better fit to 
the data was selected because it was found to 
be a more suitable choice for explaining the 
variability in “Discharge.”  This choice was 
further strengthened by its better predictive 
performance and model comparison results. It 
will serve as a valuable tool for understanding 
the complex interactions between streamflow 
and water quality parameters and predicting 
the temporal and spatial variations in water 
quality within the river and for assessing the 
impact of anthropogenic activities on the water 
quality of Asa River.  
This will also enable the formulation of strategies 
and policy development for effective water 
resource management, environmental science 
and pollution control in the study area. This study 
therefore suggests that other factors not 
considered in this model be explored in 
subsequent studies as they may influence the 
water quality parameters.  
Application of Geographic Information System 
(GIS) for water quality monitoring and 
evaluation can also be explored. 
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