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Abstract: The in–plane stability and mechanical state of pinned–fixed arches under an arbitrarily positioned concentrated radial load is assessed. By assumption, the 
cross–sections rotate as rigid bodies and stay perpendicular to the centerline. The beam model applied is non–linear through the rotations and is based on the single layer 
Euler–Bernoulli hypothesis. The material is linearly elastic, isotropic and does not vary along the centerline. Graphical results are given for the lowest buckling loads in 
terms of the geometry and load position. Furthermore, the typical normal and tangential displacements together with the bending moment, shear force and axial force 
distributions are assessed too. 
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INTRODUCTION 
Arches are preferred elements that can be 
used in several engineering structures. One 
preferred application is in lightweight roof 
structures.  
There is a vast amount of literature available on 
the buckling of beams and arches. For a 
comprehensive summary, we refer to books 
[1,2]. Early arch models, such as [3], assumed 
the inextensibility of the centroidal axis. 
However, it was later proved [4,5] that this 
simplification could overestimate the maximum 
allowable load, making earlier models 
outdated. 
In recent decades, there has been significant 
progress in addressing various shallow arch 
problems, with numerous articles published on 
the topic – see, example [6,7,8,9,10]. These 
studies primarily focus on in–plane stability and 
employ a range of approaches and 
assumptions. Some provide solutions for 
homogeneous or functionally graded members, 
while others consider different load types, such 
as concentrated or distributed loads along the 
centroidal axis. The cross–sectional geometry is 
both constant throughout the entire arch, or 
varies in segments, and there are various 
support configurations considered in these 
studies. 
Article [11] thoroughly investigated the in–plane 
linear elastic buckling of arches. With respect to 
the in–plane nonlinear buckling, papers [12,13] 
addressed the in–plane nonlinear elastic 
buckling and post–buckling of circular shallow 

arches, taking into account the pre–buckling 
deformation effect, and came up with exact 
analytical solutions. 
Based on these former works, here we present a 
non–linear model capable of dealing with 
circular arches. There are two aims. First, to find 
the lowest buckling loads when there is an 
external force in radial direction at an arbitrary 
position. Secondly and more importantly, to 
investigate how the tangential– and normal 
displacements, bending moments, shear forces 
and axial forces change just prior to buckling as 
the load position is varied.  
The text of this paper is composed of five 
sections. Following this introduction, the major 
properties of the mechanical model are given. 
Then, in Section 3, the computational results are 
provided graphically. The Conclusions section 
gathers the most important findings, and finally, 
the list of References close the article.  
MODEL PROPERTIES 
The mechanical model is the same as detailed 
in [14, 15]. Figure 1 shows the centerline of the 
circular arch. The pinned–fixed arch, whose 
initial constant radius is ρo, is loaded by a 
concentrated radial force Pζ.  
The load position is arbitrary, and is identified by 
the angle coordinate φ=α – its sign matters 
because of the uneven supports and its 
magnitude is not greater than the semi–vertex 
angle ϑ.  
The membrane strain on the centerline is 
approximated as 
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where u0 and w0 are the axial and radial 
displacements and s=ρ0φ is the arc coordinate. 
The arc coordinate is zero at the crown of the 
arch. 

 
Figure 1. The one–dimensional pinned–fixed beam model with the loading 

 
The axial force and the bending moment are 
defined as 
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with IE being the bending stiffness and A is the 
cross–sectional area. The static equilibrium 
equations for arches with uniform cross–section 
and radial load are simply 
 

   εm′ = 0, (4a) 
 

   W′′′ + (μ2 + 1)W′′ + μ2W = μ2 − 1,   (4b) 
 
given the notational convention 
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and the parameters 
 

 μ2 = 1 − mεm  ,   m =
Aρ02

I
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Furthermore, W=w0/ρ0 is a dimensionless radial 
displacement. Former equations (4a), (4b) 
together with the boundary conditions valid for 
pinned–fixed arches define a boundary value 
problem that was solved to get the lowest 

buckling loads and related strains of arches 
under an arbitrary concentrated radial load. 
RESULTS  
Evaluation of the model is presented hereinafter 
Computations were carried out using 
mathematical software Maple. During our 
efforts, the quotient of the arch length S=2ρoϑ 
and the r radius of gyration 
 

   r2 = I/A   (7) 

and the some previously introduced 
parameters, like m, α/ϑ; ϑ are used. 
Furthermore, 
 

   P =
Pζρ02ϑ 

2IE
  

 
(8) 

 
is a dimensionless critical load. 
 

 
Figure 2. Lowest dimensionless buckling loads for S/r = 80 

 
In Figure 2 it is shown how the lowest 
dimensionless buckling load varies with the 
semi–vertex angle of the arch when the S/r ratio 
is 80. Three load positions are assessed: 
α/ϑ=[−0.2;0;0.2]. Because the supports are 
unsymmetrical, the sign of the load position is 
relevant in terms of the load bearing abilities. 
The continuous curve represents that the load is 
in the mid–span. It shows a monotonous trend. 
For very small angles, there is no buckling 
expected.  
After that the critical load increases steeply until 
about ϑ≈0.4. Later, it flattens and actually the 
arch angle does not have so drastic effects as 
beforehand. When the load position parameter 
is set to –0.2 (the load application point is 
moved closer to the fixed support), the critical 
loads exceed the former case throughout.  
The greatest improvement is experienced at 
ϑ≈0.27 with +28.8%, while in the vicinity of ϑ≈0.7, 
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the relative difference is the lowest, staying 
below 5%. However, when the load is moved 
closer to the pinned support as α/ϑ=+0.2, the 
critical load values are much lower. The range 
in which it changes in relation to the crown–
point load is within –14.9...–32.2%, having the 
greatest discrepancy at ϑ=1. 
In the following, some field distributions are 
presented along the arch centerline, using the 
dimensionless coordinate φ/ϑ ∈[−1;1]. The 
selected arch for the demonstrations have the 
following properties. It has a homogeneous, 
rectangular cross–section with A=8 mm2 and 
I=2.66 mm4. The modulus of elasticity E is 200 
GPa. Let us use m=105 so that ρo=182.5 mm and 
ϑ=0.25. The effect of four load positions are 
assessed when the related buckling load is 
applied. This buckling load is different for each 
case – see Figure 2. 
 

 
Figure 3. The normal displacements in [mm] along the centerline 

 
The radial displacement field is given in Figure 3. 
The lowest displacements occur at the moment 
of buckling when α/ϑ = 0.2, and the greatest 
ones at α/ϑ=–0.4. This later case holds the 
greatest buckling load at the same time. 
Because of the unsymmetrical supports, even 
the displacement pattern at α=0 is not 
symmetric. 
When we move on to the tangential 
displacements, as per Figure 4, it can be 
concluded that these values are much lower 
than the radial displacements. It is due to the 
fact that the selected arch is shallow. Here, 
there is much less relative difference in the peak 
values, in comparison to the radial 
displacements.  

 
Figure 4. The tangential displacements in [mm] along the centerline 

 
Proceeding with the bending moment 
distribution (Figure 5), it turns out that arches 
when α/ϑ = −0.4 can bear by far the highest 
levels until buckling and the lowest values are 
found throughout the centerline if α/ϑ = 0.2. The 
difference between the peak values is more 
than 2.5 times, that is quite substantial. It is also 
clearly visible that at the right pinned support, 
the bending moment is always zero, while the 
left–sided fixed support can bear moment load. 
 

 
Figure 5. The bending moments in [Nmm] along the centreline 

 
The shear force distribution is shown in Figure 6. 
It always has a discontinuity, exactly at the 
external load position. From these graphs, the 
buckling load values can also be read, which 
the discontinuity itself is.  
As shown in Figure 7, the axial force is almost 
evenly distributed for each case, although, the 
load position clearly affects the actual values. 
The maximum values on account of the load 
position are about 1.6 times of the minimum. 
Greatest values are found for crown–point load. 
Overall, it can be concluded that displacing 
the load from the crown in both directions 
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makes the axial force decrease at the moment 
of buckling. 

 
Figure 6. The shear force in [N] along the centerline 

 
Figure 7. The axial force in [N] along the centerline 

The relative values are given in the forthcoming 
figures (Figures 8–12) regarding the previous 
fields. The actual values are always divided by 
the maximum for mid–span load along the 
vertical coordinate axis. In this way, it is easier to 
make comparisons between the results of the 
various loading positions. 

 
Figure 8. The relative radial displacement along the centerline 

 
Figure 9. The relative tangential displacement along the centerline 

 

 
Figure 10. The relative bending moment along the centerline 

 

 
Figure 11. The relative shear force along the centreline 

 

 
Figure 12. The relative axial force along the centerline 
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CONCLUSIONS 
The topic of the article is the stability pinned–
fixed circular arches. The problem solved is 
physically linear and geometrically nonlinear. 
The introduced one–dimensional beam model 
is based on the single–layer Euler–Bernoulli 
hypothesis.  
The lowest buckling loads are evaluated. 
Furthermore, at the moment of buckling, the 
typical fields are plotted along the centerline 
for comparisons. It is found that the load 
position has significant effects not only on the 
buckling load but also on the typical values 
and patterns of the displacements and inner 
forces. 
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